Combining affinity propagation with differential evolution for three-echelon logistics distribution optimization

计算机科学 车辆路径问题 数学优化 水准点(测量) 分布估计算法 配送中心 差异进化 布线(电子设计自动化) 算法 数学 大地测量学 计算机网络 商业 业务 地理
作者
Haifei Zhang,Hongwei Ge,Jieming Yang,Shuzhi Su,Yubing Tong
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:131: 109787-109787 被引量:9
标识
DOI:10.1016/j.asoc.2022.109787
摘要

In order to alleviate urban congestion, improve vehicle mobility and logistics distribution efficiency, the urban logistics distribution system is regarded as a three-echelon logistics distribution system. In this paper, a mathematical model of the 3-echelon logistics distribution problem (3E-LDP) considering time window constraint is established based on the directed graph, and a double-tier intelligent algorithm solution scheme is proposed, which combines the distance entropy-based Affinity Propagation clustering (DEBAP) algorithm and the crossover and selection-based differential evolution algorithm (CSBDE). First of all, in order to reduce the scale of logistics distribution and improve the utilization rate of logistics distribution facilities, the DEBAP algorithm is proposed in the upper tier to divide the logistics distribution region and optimize the distribution of logistics facilities, and the resulting scheme is passed to the vehicle routing optimization algorithm in the lower tier. Secondly, the vehicle routes at all levels are optimized based on the CSBDE algorithm at the lower tier, and the optimized route scheme is fed back to the DEBAP algorithm at the upper tier, so as to coordinate multi-echelon logistics distribution. Then, a search strategy based on the reachable distribution region and a facility allocation optimization strategy based on the weight of routing length are proposed to improve the efficiency of the algorithm. Based on the above algorithms, the optimization of the three-echelon logistics distribution system is completed in coordination. Finally, the performance of the proposed method is evaluated on the standard benchmark instances of the problem. The experimental results show that the three-echelon logistics model can improve the efficiency of logistics distribution, and the method has the best comprehensive performance, which is better than the most advanced 3E-LDP solution method. It has great potential in practical projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
33发布了新的文献求助10
1秒前
圆圆发布了新的文献求助10
2秒前
zz发布了新的文献求助20
2秒前
wwe发布了新的文献求助10
4秒前
陈花蕾发布了新的文献求助10
6秒前
6秒前
路脚下完成签到 ,获得积分10
8秒前
震动的化蛹完成签到,获得积分20
9秒前
9秒前
hhr完成签到 ,获得积分10
9秒前
wwe完成签到,获得积分10
10秒前
如你所liao完成签到,获得积分10
11秒前
CodeCraft应助圆圆采纳,获得10
12秒前
科研通AI2S应助hh采纳,获得10
13秒前
14秒前
14秒前
17秒前
Ava应助zz采纳,获得10
17秒前
quzhenzxxx完成签到 ,获得积分10
18秒前
18秒前
和谐的白玉完成签到,获得积分10
18秒前
南边的海发布了新的文献求助10
18秒前
奋斗忆灵完成签到,获得积分10
18秒前
Hello应助wodetaiyangLLL采纳,获得10
18秒前
18秒前
wonhui发布了新的文献求助10
20秒前
稳重淇完成签到 ,获得积分10
21秒前
lewis17发布了新的文献求助10
22秒前
贝贝完成签到,获得积分10
22秒前
kk发布了新的文献求助10
23秒前
23秒前
乐乐应助落寞依珊采纳,获得10
24秒前
24秒前
深情安青应助竹马子采纳,获得10
26秒前
乐天完成签到,获得积分10
26秒前
整齐唯雪发布了新的文献求助30
26秒前
gyj1完成签到 ,获得积分10
27秒前
哈哈哈发布了新的文献求助10
28秒前
XYZ完成签到 ,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954395
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099177
捐赠科研通 3230855
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801673