Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions

超参数 人工神经网络 电池(电) 均方误差 锂离子电池 钥匙(锁) 均方根 模拟 物理 计算机科学 电气工程 工程类 人工智能 数学 统计 量子力学 功率(物理) 计算机安全
作者
Hui Pang,Longxing Wu,Jiahao Liu,Xiaofei Liu,Kai Liu
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:78: 1-12 被引量:76
标识
DOI:10.1016/j.jechem.2022.11.036
摘要

Accurate insight into the heat generation rate (HGR) of lithium-ion batteries (LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance. For this reason, this paper proposes a novel physics-informed neural network (PINN) approach for HGR estimation of LIBs under various driving conditions. Specifically, a single particle model with thermodynamics (SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR. Subsequently, the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory (BiLSTM) networks as physical information. And combined with other feature variables, a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted. Additionally, some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm (BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks. Eventually, combined with the HGR data generated from the validated virtual battery, it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test (DST) and worldwide light vehicles test procedure (WLTP), the mean absolute error under DST is 0.542 kW/m3, and the root mean square error under WLTP is 1.428 kW/m3 at 25 ℃. Lastly, the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
aa发布了新的文献求助30
1秒前
小熊应助菲菲采纳,获得10
2秒前
彪yu发布了新的文献求助10
4秒前
5秒前
FrankJeffison完成签到,获得积分20
5秒前
5秒前
英俊的铭应助忧虑的绮梅采纳,获得10
5秒前
猫猫侠完成签到,获得积分10
5秒前
5秒前
6秒前
行歌发布了新的文献求助10
6秒前
7秒前
7秒前
qwer完成签到,获得积分10
8秒前
xxxL完成签到,获得积分10
8秒前
syan完成签到,获得积分10
8秒前
9秒前
mkk发布了新的文献求助10
9秒前
英俊的铭应助喻嘟嘟采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
Hello应助jkl928采纳,获得10
11秒前
公孙世往发布了新的文献求助10
11秒前
11秒前
eloise发布了新的文献求助50
11秒前
11秒前
12秒前
lin发布了新的文献求助10
12秒前
辰溪发布了新的文献求助10
13秒前
小白兔发布了新的文献求助10
13秒前
旺旺发布了新的文献求助10
13秒前
ljydhr发布了新的文献求助10
13秒前
烟花应助laojian采纳,获得10
13秒前
14秒前
WSQ发布了新的文献求助10
14秒前
14秒前
acanacan发布了新的文献求助10
14秒前
ronnie发布了新的文献求助10
14秒前
15秒前
Chambray发布了新的文献求助10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974463
求助须知:如何正确求助?哪些是违规求助? 3518823
关于积分的说明 11196212
捐赠科研通 3255008
什么是DOI,文献DOI怎么找? 1797655
邀请新用户注册赠送积分活动 877052
科研通“疑难数据库(出版商)”最低求助积分说明 806130