Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions

超参数 人工神经网络 电池(电) 均方误差 锂离子电池 钥匙(锁) 均方根 模拟 物理 计算机科学 电气工程 工程类 人工智能 数学 统计 量子力学 功率(物理) 计算机安全
作者
Hui Pang,Longxing Wu,Jiahao Liu,Xiaofei Liu,Kai Liu
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:78: 1-12 被引量:88
标识
DOI:10.1016/j.jechem.2022.11.036
摘要

Accurate insight into the heat generation rate (HGR) of lithium-ion batteries (LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance. For this reason, this paper proposes a novel physics-informed neural network (PINN) approach for HGR estimation of LIBs under various driving conditions. Specifically, a single particle model with thermodynamics (SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR. Subsequently, the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory (BiLSTM) networks as physical information. And combined with other feature variables, a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted. Additionally, some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm (BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks. Eventually, combined with the HGR data generated from the validated virtual battery, it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test (DST) and worldwide light vehicles test procedure (WLTP), the mean absolute error under DST is 0.542 kW/m3, and the root mean square error under WLTP is 1.428 kW/m3 at 25 ℃. Lastly, the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
举一个梨子完成签到,获得积分10
1秒前
1秒前
1秒前
宋鸣鸣完成签到,获得积分10
1秒前
田様应助MX001采纳,获得10
1秒前
不发JACS不改名完成签到,获得积分10
1秒前
1秒前
开放雨真完成签到,获得积分10
2秒前
英姑应助Yanhai采纳,获得10
2秒前
3秒前
小楠发布了新的文献求助10
3秒前
LamChem发布了新的文献求助10
3秒前
SCO发布了新的文献求助10
3秒前
科目三应助含蓄傲晴采纳,获得10
3秒前
田様应助Eina采纳,获得10
3秒前
JamesPei应助懵懂的海秋采纳,获得10
4秒前
xianlu发布了新的文献求助10
4秒前
编号9527完成签到,获得积分10
4秒前
天天快乐应助求助人员采纳,获得10
4秒前
4秒前
依小米完成签到 ,获得积分10
5秒前
蜗牛发布了新的文献求助10
5秒前
jingfeng完成签到,获得积分10
5秒前
5秒前
zyj完成签到,获得积分10
5秒前
yangkun完成签到,获得积分10
6秒前
annieduan应助独角兽采纳,获得10
6秒前
6秒前
小池同学发布了新的文献求助10
6秒前
7秒前
刻苦邑完成签到,获得积分20
7秒前
顺心纸鹤发布了新的文献求助10
7秒前
俭朴的访云完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助peng采纳,获得10
8秒前
假装学霸完成签到 ,获得积分10
8秒前
8秒前
852应助sun采纳,获得10
8秒前
9秒前
英姑应助秋的账号采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512517
求助须知:如何正确求助?哪些是违规求助? 4606978
关于积分的说明 14502144
捐赠科研通 4542339
什么是DOI,文献DOI怎么找? 2489004
邀请新用户注册赠送积分活动 1471040
关于科研通互助平台的介绍 1443182