Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions

超参数 人工神经网络 电池(电) 均方误差 锂离子电池 钥匙(锁) 均方根 模拟 物理 计算机科学 电气工程 工程类 人工智能 数学 统计 量子力学 功率(物理) 计算机安全
作者
Hui Pang,Longxing Wu,Jiahao Liu,Xiaofei Liu,Kai Liu
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:78: 1-12 被引量:107
标识
DOI:10.1016/j.jechem.2022.11.036
摘要

Accurate insight into the heat generation rate (HGR) of lithium-ion batteries (LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance. For this reason, this paper proposes a novel physics-informed neural network (PINN) approach for HGR estimation of LIBs under various driving conditions. Specifically, a single particle model with thermodynamics (SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR. Subsequently, the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory (BiLSTM) networks as physical information. And combined with other feature variables, a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted. Additionally, some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm (BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks. Eventually, combined with the HGR data generated from the validated virtual battery, it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test (DST) and worldwide light vehicles test procedure (WLTP), the mean absolute error under DST is 0.542 kW/m3, and the root mean square error under WLTP is 1.428 kW/m3 at 25 ℃. Lastly, the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心树叶应助小巧的柚子采纳,获得50
刚刚
1秒前
1秒前
sssa发布了新的文献求助10
1秒前
123完成签到,获得积分10
3秒前
3秒前
风趣小蜜蜂完成签到 ,获得积分10
3秒前
3秒前
GodZ发布了新的文献求助10
3秒前
zp发布了新的文献求助10
4秒前
彭仲康完成签到,获得积分10
4秒前
从容仙人完成签到,获得积分10
4秒前
开心的渊思完成签到 ,获得积分10
5秒前
5秒前
5秒前
ohh发布了新的文献求助10
6秒前
6秒前
6秒前
瓶子君152完成签到,获得积分10
7秒前
7秒前
今后应助山药采纳,获得30
7秒前
陈橙橙完成签到,获得积分10
8秒前
ccc完成签到,获得积分10
8秒前
8秒前
8秒前
li完成签到,获得积分10
9秒前
9秒前
哎健身发布了新的文献求助10
9秒前
9秒前
9秒前
小蘑菇应助孤巷的猫采纳,获得10
10秒前
10秒前
10秒前
老黑完成签到 ,获得积分10
11秒前
zz发布了新的文献求助10
11秒前
迦佭完成签到,获得积分10
11秒前
奔波霸发布了新的文献求助10
11秒前
Huang完成签到 ,获得积分0
11秒前
汉堡包应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578302
求助须知:如何正确求助?哪些是违规求助? 4663150
关于积分的说明 14745051
捐赠科研通 4603900
什么是DOI,文献DOI怎么找? 2526774
邀请新用户注册赠送积分活动 1496369
关于科研通互助平台的介绍 1465712