Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions

超参数 人工神经网络 电池(电) 均方误差 锂离子电池 钥匙(锁) 均方根 模拟 物理 计算机科学 电气工程 工程类 人工智能 数学 统计 量子力学 功率(物理) 计算机安全
作者
Hui Pang,Longxing Wu,Jiahao Liu,Xiaofei Liu,Kai Liu
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:78: 1-12 被引量:88
标识
DOI:10.1016/j.jechem.2022.11.036
摘要

Accurate insight into the heat generation rate (HGR) of lithium-ion batteries (LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance. For this reason, this paper proposes a novel physics-informed neural network (PINN) approach for HGR estimation of LIBs under various driving conditions. Specifically, a single particle model with thermodynamics (SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR. Subsequently, the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory (BiLSTM) networks as physical information. And combined with other feature variables, a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted. Additionally, some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm (BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks. Eventually, combined with the HGR data generated from the validated virtual battery, it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test (DST) and worldwide light vehicles test procedure (WLTP), the mean absolute error under DST is 0.542 kW/m3, and the root mean square error under WLTP is 1.428 kW/m3 at 25 ℃. Lastly, the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑千凝完成签到,获得积分10
1秒前
2秒前
2秒前
4秒前
5秒前
6秒前
LiLi完成签到,获得积分10
6秒前
NNN发布了新的文献求助10
6秒前
7秒前
7秒前
科研通AI6应助DDA采纳,获得30
7秒前
彭于晏应助王肖宁采纳,获得10
7秒前
追寻羿完成签到 ,获得积分10
8秒前
zhzhzh发布了新的文献求助10
9秒前
科研通AI6应助黑马采纳,获得10
9秒前
嘿嘿发布了新的文献求助10
10秒前
10秒前
香蕉觅云应助cloud采纳,获得10
12秒前
ichi发布了新的文献求助10
12秒前
12秒前
科研通AI6应助茶米采纳,获得10
13秒前
好哥哥完成签到,获得积分0
15秒前
赵雪完成签到,获得积分10
15秒前
Ava应助科研小废物采纳,获得10
15秒前
Evan123完成签到,获得积分10
17秒前
ichi完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
Sky完成签到,获得积分10
20秒前
希望天下0贩的0应助Supine.采纳,获得10
22秒前
无极微光应助想要毕业采纳,获得20
22秒前
23秒前
25秒前
book发布了新的文献求助10
26秒前
传奇3应助兮兮采纳,获得10
26秒前
26秒前
Honey完成签到,获得积分10
27秒前
cl完成签到,获得积分10
28秒前
可爱馒头完成签到,获得积分10
29秒前
zxx完成签到,获得积分10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536778
求助须知:如何正确求助?哪些是违规求助? 4624429
关于积分的说明 14591955
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2502008
邀请新用户注册赠送积分活动 1480808
关于科研通互助平台的介绍 1451989