Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions

超参数 人工神经网络 电池(电) 均方误差 锂离子电池 钥匙(锁) 均方根 模拟 物理 计算机科学 电气工程 工程类 人工智能 数学 统计 计算机安全 量子力学 功率(物理)
作者
Hui Pang,Longxing Wu,Jiahao Liu,Xiaofei Liu,Kai Liu
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:78: 1-12 被引量:56
标识
DOI:10.1016/j.jechem.2022.11.036
摘要

Accurate insight into the heat generation rate (HGR) of lithium-ion batteries (LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance. For this reason, this paper proposes a novel physics-informed neural network (PINN) approach for HGR estimation of LIBs under various driving conditions. Specifically, a single particle model with thermodynamics (SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR. Subsequently, the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory (BiLSTM) networks as physical information. And combined with other feature variables, a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted. Additionally, some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm (BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks. Eventually, combined with the HGR data generated from the validated virtual battery, it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test (DST) and worldwide light vehicles test procedure (WLTP), the mean absolute error under DST is 0.542 kW/m3, and the root mean square error under WLTP is 1.428 kW/m3 at 25 ℃. Lastly, the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空曲发布了新的文献求助10
2秒前
小蘑菇应助林一存采纳,获得10
3秒前
balzacsun完成签到,获得积分20
4秒前
4秒前
科研通AI2S应助mufcyang采纳,获得10
4秒前
搜集达人应助聪明与摩羯采纳,获得10
5秒前
yuanzhilong发布了新的文献求助10
5秒前
酷炫的电源完成签到 ,获得积分10
6秒前
小马甲应助乐橙采纳,获得10
7秒前
菡一往完成签到 ,获得积分10
7秒前
7秒前
英俊的铭应助mw采纳,获得10
8秒前
荔枝发布了新的文献求助10
8秒前
机灵哈密瓜完成签到,获得积分10
9秒前
10秒前
大熊完成签到 ,获得积分10
11秒前
strelias发布了新的文献求助10
11秒前
infinity完成签到 ,获得积分10
12秒前
小王的科研小助手完成签到 ,获得积分10
14秒前
稞小弟发布了新的文献求助10
15秒前
15秒前
汉堡包应助迅速冥茗采纳,获得10
15秒前
张美超完成签到,获得积分10
16秒前
16秒前
缓慢小熊猫完成签到 ,获得积分10
17秒前
17秒前
顾矜应助荔枝采纳,获得10
17秒前
菡一往关注了科研通微信公众号
17秒前
18秒前
strelias完成签到,获得积分10
18秒前
Mercury发布了新的文献求助10
18秒前
wmuer完成签到 ,获得积分10
18秒前
xjcy应助科研通管家采纳,获得10
19秒前
8R60d8应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146344
求助须知:如何正确求助?哪些是违规求助? 2797778
关于积分的说明 7825411
捐赠科研通 2454118
什么是DOI,文献DOI怎么找? 1306100
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503