Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions

超参数 人工神经网络 电池(电) 均方误差 锂离子电池 钥匙(锁) 均方根 模拟 物理 计算机科学 电气工程 工程类 人工智能 数学 统计 量子力学 功率(物理) 计算机安全
作者
Hui Pang,Longxing Wu,Jiahao Liu,Xiaofei Liu,Kai Liu
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:78: 1-12 被引量:88
标识
DOI:10.1016/j.jechem.2022.11.036
摘要

Accurate insight into the heat generation rate (HGR) of lithium-ion batteries (LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance. For this reason, this paper proposes a novel physics-informed neural network (PINN) approach for HGR estimation of LIBs under various driving conditions. Specifically, a single particle model with thermodynamics (SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR. Subsequently, the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory (BiLSTM) networks as physical information. And combined with other feature variables, a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted. Additionally, some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm (BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks. Eventually, combined with the HGR data generated from the validated virtual battery, it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test (DST) and worldwide light vehicles test procedure (WLTP), the mean absolute error under DST is 0.542 kW/m3, and the root mean square error under WLTP is 1.428 kW/m3 at 25 ℃. Lastly, the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
woodenfish完成签到,获得积分10
2秒前
4秒前
坦率书竹发布了新的文献求助10
7秒前
YHDing发布了新的文献求助10
8秒前
心碎的黄焖鸡完成签到 ,获得积分10
9秒前
9秒前
10秒前
zuihaodewomen完成签到 ,获得积分10
11秒前
11秒前
糜灭龙发布了新的文献求助10
12秒前
书书完成签到 ,获得积分20
13秒前
14秒前
14秒前
droke发布了新的文献求助10
15秒前
JAJ发布了新的文献求助10
15秒前
17秒前
Hello应助迷路达采纳,获得10
19秒前
Zx完成签到,获得积分10
20秒前
努力发布了新的文献求助10
20秒前
tulips发布了新的文献求助10
20秒前
21秒前
甜美的芷完成签到,获得积分10
21秒前
22秒前
天道酬勤发布了新的文献求助10
24秒前
25秒前
26秒前
26秒前
甜美的芷发布了新的文献求助10
27秒前
李健的小迷弟应助tulips采纳,获得10
27秒前
27秒前
biubiu发布了新的文献求助10
29秒前
wtt发布了新的文献求助10
30秒前
31秒前
lotus完成签到,获得积分10
31秒前
32秒前
gui完成签到,获得积分10
33秒前
专注的易文完成签到,获得积分10
34秒前
乐乐应助liao_duoduo采纳,获得50
35秒前
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298490
求助须知:如何正确求助?哪些是违规求助? 4447022
关于积分的说明 13841382
捐赠科研通 4332463
什么是DOI,文献DOI怎么找? 2378206
邀请新用户注册赠送积分活动 1373449
关于科研通互助平台的介绍 1339015