Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions

超参数 人工神经网络 电池(电) 均方误差 锂离子电池 钥匙(锁) 均方根 模拟 物理 计算机科学 电气工程 工程类 人工智能 数学 统计 量子力学 功率(物理) 计算机安全
作者
Hui Pang,Longxing Wu,Jiahao Liu,Xiaofei Liu,Kai Liu
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:78: 1-12 被引量:68
标识
DOI:10.1016/j.jechem.2022.11.036
摘要

Accurate insight into the heat generation rate (HGR) of lithium-ion batteries (LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance. For this reason, this paper proposes a novel physics-informed neural network (PINN) approach for HGR estimation of LIBs under various driving conditions. Specifically, a single particle model with thermodynamics (SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR. Subsequently, the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory (BiLSTM) networks as physical information. And combined with other feature variables, a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted. Additionally, some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm (BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks. Eventually, combined with the HGR data generated from the validated virtual battery, it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test (DST) and worldwide light vehicles test procedure (WLTP), the mean absolute error under DST is 0.542 kW/m3, and the root mean square error under WLTP is 1.428 kW/m3 at 25 ℃. Lastly, the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请叫我风吹麦浪完成签到,获得积分0
刚刚
清爽雪枫发布了新的文献求助10
1秒前
1秒前
1秒前
李健应助斜杠武采纳,获得10
2秒前
fengxj完成签到 ,获得积分10
2秒前
2秒前
2秒前
七七给七七的求助进行了留言
2秒前
3秒前
3秒前
Hello应助冷静的平安采纳,获得10
3秒前
FKVB_完成签到 ,获得积分10
4秒前
饼饼完成签到,获得积分10
4秒前
天天快乐应助木木采纳,获得10
4秒前
艺玲发布了新的文献求助10
4秒前
大气飞丹发布了新的文献求助10
4秒前
丫丫完成签到,获得积分10
5秒前
科研通AI2S应助觅桃乌龙采纳,获得10
5秒前
耿强完成签到,获得积分10
5秒前
wanci应助dd采纳,获得10
6秒前
汉堡包应助cuihl123采纳,获得10
6秒前
李浓完成签到,获得积分10
6秒前
DreamMaker发布了新的文献求助10
6秒前
mao12wang完成签到,获得积分10
7秒前
7秒前
bdvdsrwteges发布了新的文献求助10
8秒前
如约而至发布了新的文献求助20
8秒前
纯真的莫茗完成签到,获得积分10
8秒前
彭于晏应助超11采纳,获得10
9秒前
9秒前
gavincsu发布了新的文献求助10
9秒前
KSGGS给KSGGS的求助进行了留言
9秒前
flow驳回了Aria应助
9秒前
lixiunan完成签到,获得积分10
9秒前
9秒前
dildil发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759