Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions

超参数 人工神经网络 电池(电) 均方误差 锂离子电池 钥匙(锁) 均方根 模拟 物理 计算机科学 电气工程 工程类 人工智能 数学 统计 量子力学 功率(物理) 计算机安全
作者
Hui Pang,Longxing Wu,Jiahao Liu,Xiaofei Liu,Kai Liu
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:78: 1-12 被引量:88
标识
DOI:10.1016/j.jechem.2022.11.036
摘要

Accurate insight into the heat generation rate (HGR) of lithium-ion batteries (LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance. For this reason, this paper proposes a novel physics-informed neural network (PINN) approach for HGR estimation of LIBs under various driving conditions. Specifically, a single particle model with thermodynamics (SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR. Subsequently, the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory (BiLSTM) networks as physical information. And combined with other feature variables, a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted. Additionally, some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm (BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks. Eventually, combined with the HGR data generated from the validated virtual battery, it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test (DST) and worldwide light vehicles test procedure (WLTP), the mean absolute error under DST is 0.542 kW/m3, and the root mean square error under WLTP is 1.428 kW/m3 at 25 ℃. Lastly, the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
2秒前
亚胺培南西司他丁钠完成签到 ,获得积分10
2秒前
3秒前
3秒前
zhengguibin完成签到 ,获得积分10
4秒前
11完成签到,获得积分10
4秒前
大龙哥886应助hAFMET采纳,获得10
5秒前
大吉完成签到,获得积分10
6秒前
上官若男应助katsuras采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
愉快板凳发布了新的文献求助20
8秒前
休比里斯老板完成签到,获得积分10
9秒前
乐乐应助hyf采纳,获得10
10秒前
wow发布了新的文献求助10
11秒前
脑洞疼应助senli2018采纳,获得10
13秒前
郑力阳完成签到,获得积分10
13秒前
端庄南莲发布了新的文献求助10
13秒前
华仔应助害羞冰蓝采纳,获得10
14秒前
Hello应助百里烬言采纳,获得30
16秒前
情怀应助剑来采纳,获得10
17秒前
17秒前
wzc发布了新的文献求助10
18秒前
温暖伟祺完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
20秒前
21秒前
万能图书馆应助汪金采纳,获得10
21秒前
PhDL1发布了新的文献求助10
21秒前
Flllllll完成签到,获得积分10
22秒前
wuzhen1996完成签到,获得积分10
22秒前
23秒前
Henvy发布了新的文献求助10
24秒前
24秒前
wuzhen1996发布了新的文献求助10
25秒前
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421305
求助须知:如何正确求助?哪些是违规求助? 4536294
关于积分的说明 14153173
捐赠科研通 4452894
什么是DOI,文献DOI怎么找? 2442643
邀请新用户注册赠送积分活动 1434026
关于科研通互助平台的介绍 1411219