已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep-learning missing well-log prediction via long short-term memory network with attention-period mechanism

计算机科学 深度学习 人工智能 稳健性(进化) 水准点(测量) 循环神经网络 卷积神经网络 图层(电子) 回声状态网络 特征提取 自回归模型 特征(语言学) 人工神经网络 模式识别(心理学) 数据挖掘 数学 统计 地质学 哲学 大地测量学 基因 有机化学 化学 生物化学 语言学
作者
Liuqing Yang,Shoudong Wang,Xiaohong Chen,Wei Chen,Omar M. Saad,Yangkang Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (1): D31-D48 被引量:18
标识
DOI:10.1190/geo2020-0749.1
摘要

Underground reservoir information can be obtained through well-log interpretation. However, some logs might be missing due to various reasons, such as instrument failure. A deep-learning-based method that combines a convolutional layer and a long short-term memory (LSTM) layer is proposed to estimate the missing logs without the expensive relogging. The convolutional layer is used to extract the depth-series features initially, which are then input into the LSTM layer. To improve the feature memory and extraction capabilities of the LSTM layer, we construct two LSTM-based components: the first component uses an attention mechanism to optimize the LSTM units by adaptively adjusting network weights, and the second component uses a period-skip mechanism, which enhances the sensitivity of aperiodic changes in the depth series by learning the information of the shallow sequence. In addition, we add an autoregressive component to enhance the linear feature extraction capability while learning the nonlinear relationship between different logs. A total of 13 wells from two different regions are used for experiments, including 11 training and two test wells. We use one well to calculate the uncertainties of four time-series networks, i.e., our proposed network and three benchmark models (recurrent neural network, gated recurrent unit, and LSTM), to demonstrate the stability and robustness of the proposed method. Furthermore, we evaluate the performance of our proposed method in several crossover experiments, e.g., different logging intervals, depths, and input logs. Compared to a state-of-the-art deep learning method and a classic LSTM network, the proposed network has higher reliability, which is reflected in the feature extraction of depth series with a larger span. The experimental results demonstrate that our proposed network can accurately generate sonic and other unknown logs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助zzh采纳,获得10
1秒前
香蕉觅云应助helpme采纳,获得10
1秒前
个性的舞蹈完成签到 ,获得积分10
3秒前
LaTeXer应助chunfengfusu采纳,获得30
3秒前
天冬发布了新的文献求助10
4秒前
科研通AI6应助读书的时候采纳,获得10
4秒前
gishwx完成签到,获得积分20
5秒前
ding应助dawn采纳,获得10
7秒前
叶的舒完成签到,获得积分10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得20
8秒前
8秒前
12秒前
tzh完成签到,获得积分10
12秒前
12秒前
善学以致用应助董吧啦采纳,获得10
12秒前
科研通AI5应助llwwtt采纳,获得10
13秒前
dingding82发布了新的文献求助10
13秒前
healthy发布了新的文献求助10
14秒前
雪白的听寒完成签到 ,获得积分10
15秒前
ocean完成签到,获得积分10
15秒前
善学以致用应助海阔天空采纳,获得10
15秒前
Dr.发布了新的文献求助10
17秒前
烂漫小丸子完成签到,获得积分10
20秒前
20秒前
Hello应助xu1227采纳,获得10
21秒前
22秒前
科研通AI6应助读书的时候采纳,获得10
23秒前
24秒前
24秒前
llwwtt发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Atlas of the Rabbit Brain and Spinal Cord 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5018054
求助须知:如何正确求助?哪些是违规求助? 4257478
关于积分的说明 13269138
捐赠科研通 4061931
什么是DOI,文献DOI怎么找? 2221666
邀请新用户注册赠送积分活动 1230889
关于科研通互助平台的介绍 1153532