Deep-learning missing well-log prediction via long short-term memory network with attention-period mechanism

计算机科学 深度学习 人工智能 稳健性(进化) 水准点(测量) 循环神经网络 卷积神经网络 图层(电子) 回声状态网络 特征提取 自回归模型 特征(语言学) 人工神经网络 模式识别(心理学) 数据挖掘 数学 统计 地质学 哲学 大地测量学 基因 有机化学 化学 生物化学 语言学
作者
Liuqing Yang,Shoudong Wang,Xiaohong Chen,Wei Chen,Omar M. Saad,Yangkang Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (1): D31-D48 被引量:18
标识
DOI:10.1190/geo2020-0749.1
摘要

Underground reservoir information can be obtained through well-log interpretation. However, some logs might be missing due to various reasons, such as instrument failure. A deep-learning-based method that combines a convolutional layer and a long short-term memory (LSTM) layer is proposed to estimate the missing logs without the expensive relogging. The convolutional layer is used to extract the depth-series features initially, which are then input into the LSTM layer. To improve the feature memory and extraction capabilities of the LSTM layer, we construct two LSTM-based components: the first component uses an attention mechanism to optimize the LSTM units by adaptively adjusting network weights, and the second component uses a period-skip mechanism, which enhances the sensitivity of aperiodic changes in the depth series by learning the information of the shallow sequence. In addition, we add an autoregressive component to enhance the linear feature extraction capability while learning the nonlinear relationship between different logs. A total of 13 wells from two different regions are used for experiments, including 11 training and two test wells. We use one well to calculate the uncertainties of four time-series networks, i.e., our proposed network and three benchmark models (recurrent neural network, gated recurrent unit, and LSTM), to demonstrate the stability and robustness of the proposed method. Furthermore, we evaluate the performance of our proposed method in several crossover experiments, e.g., different logging intervals, depths, and input logs. Compared to a state-of-the-art deep learning method and a classic LSTM network, the proposed network has higher reliability, which is reflected in the feature extraction of depth series with a larger span. The experimental results demonstrate that our proposed network can accurately generate sonic and other unknown logs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级的三问完成签到,获得积分10
刚刚
顺心秋天完成签到,获得积分10
刚刚
LAN0528发布了新的文献求助10
1秒前
晓晓鹤发布了新的文献求助10
1秒前
Orange应助桔子采纳,获得10
1秒前
1秒前
糖果完成签到 ,获得积分10
1秒前
当归完成签到,获得积分10
2秒前
玩命的幻香完成签到 ,获得积分20
3秒前
ABC的风格完成签到,获得积分10
3秒前
SciGPT应助任炳成采纳,获得20
4秒前
淡淡夕阳完成签到,获得积分10
5秒前
悦耳的阑悦完成签到,获得积分20
5秒前
烟花应助T_KYG采纳,获得10
6秒前
6秒前
luobin完成签到,获得积分10
6秒前
老高发布了新的文献求助10
7秒前
7秒前
科研通AI6应助hp采纳,获得10
7秒前
卷卷完成签到,获得积分10
7秒前
热情豌豆完成签到,获得积分10
8秒前
列娜完成签到,获得积分10
9秒前
liu发布了新的文献求助10
9秒前
9秒前
10秒前
那只幸运的小肥羊完成签到,获得积分10
10秒前
yb完成签到,获得积分10
11秒前
TRY发布了新的文献求助10
11秒前
卷卷发布了新的文献求助10
11秒前
12秒前
12秒前
虎杖悠仁完成签到,获得积分20
12秒前
八号仓上半场完成签到,获得积分10
14秒前
lq8996完成签到 ,获得积分10
14秒前
99完成签到,获得积分20
14秒前
肖浩翔发布了新的文献求助10
14秒前
ZT完成签到,获得积分10
15秒前
任侠传发布了新的文献求助10
16秒前
16秒前
hp发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600957
求助须知:如何正确求助?哪些是违规求助? 4686530
关于积分的说明 14844417
捐赠科研通 4679086
什么是DOI,文献DOI怎么找? 2539100
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252