Deep-learning missing well-log prediction via long short-term memory network with attention-period mechanism

计算机科学 深度学习 人工智能 稳健性(进化) 水准点(测量) 循环神经网络 卷积神经网络 图层(电子) 回声状态网络 特征提取 自回归模型 特征(语言学) 人工神经网络 模式识别(心理学) 数据挖掘 数学 统计 地质学 生物化学 化学 大地测量学 有机化学 基因 语言学 哲学
作者
Liuqing Yang,Shoudong Wang,Xiaohong Chen,Wei Chen,Omar M. Saad,Yangkang Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (1): D31-D48 被引量:18
标识
DOI:10.1190/geo2020-0749.1
摘要

Underground reservoir information can be obtained through well-log interpretation. However, some logs might be missing due to various reasons, such as instrument failure. A deep-learning-based method that combines a convolutional layer and a long short-term memory (LSTM) layer is proposed to estimate the missing logs without the expensive relogging. The convolutional layer is used to extract the depth-series features initially, which are then input into the LSTM layer. To improve the feature memory and extraction capabilities of the LSTM layer, we construct two LSTM-based components: the first component uses an attention mechanism to optimize the LSTM units by adaptively adjusting network weights, and the second component uses a period-skip mechanism, which enhances the sensitivity of aperiodic changes in the depth series by learning the information of the shallow sequence. In addition, we add an autoregressive component to enhance the linear feature extraction capability while learning the nonlinear relationship between different logs. A total of 13 wells from two different regions are used for experiments, including 11 training and two test wells. We use one well to calculate the uncertainties of four time-series networks, i.e., our proposed network and three benchmark models (recurrent neural network, gated recurrent unit, and LSTM), to demonstrate the stability and robustness of the proposed method. Furthermore, we evaluate the performance of our proposed method in several crossover experiments, e.g., different logging intervals, depths, and input logs. Compared to a state-of-the-art deep learning method and a classic LSTM network, the proposed network has higher reliability, which is reflected in the feature extraction of depth series with a larger span. The experimental results demonstrate that our proposed network can accurately generate sonic and other unknown logs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyun完成签到,获得积分10
1秒前
lixm发布了新的文献求助10
5秒前
7秒前
研友_VZG7GZ应助务实的犀牛采纳,获得10
8秒前
9秒前
狂野代桃发布了新的文献求助10
12秒前
加菲丰丰应助Anquan采纳,获得30
12秒前
biubiu完成签到,获得积分10
13秒前
茶茶发布了新的文献求助10
13秒前
15秒前
酷波er应助健忘捕采纳,获得10
15秒前
李健应助irisjlj采纳,获得10
17秒前
001完成签到 ,获得积分20
18秒前
sgjj33完成签到,获得积分10
20秒前
情怀应助凝子老师采纳,获得10
21秒前
迪丽盐巴完成签到,获得积分10
22秒前
26秒前
27秒前
合适的致远完成签到,获得积分10
29秒前
小马甲应助sgjj33采纳,获得10
31秒前
所所应助奋斗灵波采纳,获得10
32秒前
33秒前
慌糖完成签到,获得积分10
34秒前
liu完成签到,获得积分10
36秒前
柔弱凡松发布了新的文献求助10
38秒前
38秒前
40秒前
QQQQ发布了新的文献求助20
40秒前
zy完成签到 ,获得积分10
40秒前
坦率若颜发布了新的文献求助10
44秒前
terence应助YYJ25采纳,获得10
45秒前
47秒前
49秒前
49秒前
JianminLuo完成签到 ,获得积分10
50秒前
慌糖发布了新的文献求助10
50秒前
贪玩语蓉完成签到,获得积分10
51秒前
52秒前
heidi发布了新的文献求助10
53秒前
53秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851