Deep-learning missing well-log prediction via long short-term memory network with attention-period mechanism

计算机科学 深度学习 人工智能 稳健性(进化) 水准点(测量) 循环神经网络 卷积神经网络 图层(电子) 回声状态网络 特征提取 自回归模型 特征(语言学) 人工神经网络 模式识别(心理学) 数据挖掘 数学 统计 地质学 哲学 大地测量学 基因 有机化学 化学 生物化学 语言学
作者
Liuqing Yang,Shoudong Wang,Xiaohong Chen,Wei Chen,Omar M. Saad,Yangkang Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (1): D31-D48 被引量:18
标识
DOI:10.1190/geo2020-0749.1
摘要

Underground reservoir information can be obtained through well-log interpretation. However, some logs might be missing due to various reasons, such as instrument failure. A deep-learning-based method that combines a convolutional layer and a long short-term memory (LSTM) layer is proposed to estimate the missing logs without the expensive relogging. The convolutional layer is used to extract the depth-series features initially, which are then input into the LSTM layer. To improve the feature memory and extraction capabilities of the LSTM layer, we construct two LSTM-based components: the first component uses an attention mechanism to optimize the LSTM units by adaptively adjusting network weights, and the second component uses a period-skip mechanism, which enhances the sensitivity of aperiodic changes in the depth series by learning the information of the shallow sequence. In addition, we add an autoregressive component to enhance the linear feature extraction capability while learning the nonlinear relationship between different logs. A total of 13 wells from two different regions are used for experiments, including 11 training and two test wells. We use one well to calculate the uncertainties of four time-series networks, i.e., our proposed network and three benchmark models (recurrent neural network, gated recurrent unit, and LSTM), to demonstrate the stability and robustness of the proposed method. Furthermore, we evaluate the performance of our proposed method in several crossover experiments, e.g., different logging intervals, depths, and input logs. Compared to a state-of-the-art deep learning method and a classic LSTM network, the proposed network has higher reliability, which is reflected in the feature extraction of depth series with a larger span. The experimental results demonstrate that our proposed network can accurately generate sonic and other unknown logs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助细心的安珊采纳,获得10
1秒前
1秒前
1秒前
白昼完成签到 ,获得积分10
2秒前
Tianna完成签到,获得积分10
3秒前
枫叶完成签到 ,获得积分10
3秒前
旦皋发布了新的文献求助10
3秒前
3秒前
dll发布了新的文献求助10
4秒前
卤鸭完成签到,获得积分10
4秒前
4秒前
julienCCC完成签到,获得积分10
5秒前
YE完成签到,获得积分10
5秒前
果冻橙完成签到,获得积分10
5秒前
微笑风华完成签到,获得积分10
6秒前
6秒前
Llllllllily应助xx采纳,获得10
6秒前
yang发布了新的文献求助80
7秒前
hkxfg完成签到,获得积分10
8秒前
smooth8发布了新的文献求助30
8秒前
Orange应助曾经的听枫采纳,获得10
8秒前
荔枝多酚完成签到,获得积分10
9秒前
大个应助小陈同学采纳,获得10
9秒前
9秒前
DG发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助30
11秒前
11秒前
迷路的靳发布了新的文献求助10
11秒前
12秒前
阔达犀牛完成签到,获得积分10
13秒前
卤鸭发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
16秒前
17秒前
zz发布了新的文献求助20
17秒前
山茶发布了新的文献求助10
20秒前
科研通AI2S应助Xixicccccccc采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736423
求助须知:如何正确求助?哪些是违规求助? 5365865
关于积分的说明 15333121
捐赠科研通 4880261
什么是DOI,文献DOI怎么找? 2622762
邀请新用户注册赠送积分活动 1571646
关于科研通互助平台的介绍 1528507