Rapid screening based on machine learning and molecular docking of umami peptides from porcine bone

鲜味 化学 对接(动物) 计算生物学 生物化学 人工智能 生物信息学 计算机科学 医学 生物 品味 护理部
作者
Qing Liu,Xinchang Gao,Daodong Pan,Zhu Liu,Chaogeng Xiao,Lihui Du,Zhendong Cai,Wenjing Lü,Yali Dang,Ying Zou
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:103 (8): 3915-3925 被引量:23
标识
DOI:10.1002/jsfa.12319
摘要

Abstract BACKGROUND The traditional screening method for umami peptide, extracted from porcine bone, was labor‐intensive and time‐consuming. In this study, the rapid screening method and molecular mechanism of umami peptide was investigated. RESULTS This article showed that a more precisely rapid screening method with composite machine learning and molecular docking was used to screen the potential umami peptide from porcine bone. As reference, 24 reported umami peptides were predicated by composite machine learning, with the accuracy of 86.7%. In this study, potential umami peptide sequences from porcine bone were screened by UMPred‐FRL, Umami‐MRNN Demo, and molecular docking was used to provide further screening. Finally, nine peptides were screened and verified as umami peptides by this method: LREY, HEAL, LAKVH, FQKVVA, HVKELE, AEVKKAP, EAVEKPQS, KALSEEL and KKMFETES. The hydrogen bonding was deemed to be the main interaction force with receptor T1R3, and domain binding sites were Ser146, His121 and Glu277. The result demonstrated the feasibility of machine learning assisted T1R1/T1R3 receptor for rapid screening umami peptides. The screening method would not only adapt to screen umami peptides from porcine bone but possibly applied for other sources. It also provided a reference for rapid screening of umami peptides. CONCLUSION The manuscript lays a rapid screening method in screening umami peptide, and nine umami peptides from porcine bone were screened and identified. © 2022 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳄鱼发布了新的文献求助10
3秒前
4秒前
7秒前
7秒前
激昂的紫烟完成签到,获得积分10
10秒前
10秒前
秋城发布了新的文献求助10
10秒前
10秒前
橙c美式发布了新的文献求助10
11秒前
美丽松鼠发布了新的文献求助10
11秒前
Cc792发布了新的文献求助10
12秒前
霸气夏旋发布了新的文献求助10
12秒前
12秒前
13秒前
kento发布了新的文献求助30
13秒前
Jim发布了新的文献求助30
14秒前
鹿靡完成签到 ,获得积分10
14秒前
大力出奇迹完成签到,获得积分10
14秒前
龟龟完成签到,获得积分10
15秒前
小小怪将军完成签到,获得积分10
15秒前
16秒前
Snoopy发布了新的文献求助10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
ren应助科研通管家采纳,获得10
16秒前
vlots应助科研通管家采纳,获得60
17秒前
852应助科研通管家采纳,获得10
17秒前
杳鸢应助科研通管家采纳,获得20
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
111发布了新的文献求助10
17秒前
菠萝吹雪应助科研通管家采纳,获得30
17秒前
一一应助科研通管家采纳,获得30
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
东方三问完成签到,获得积分10
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233742
求助须知:如何正确求助?哪些是违规求助? 2880231
关于积分的说明 8214458
捐赠科研通 2547669
什么是DOI,文献DOI怎么找? 1377140
科研通“疑难数据库(出版商)”最低求助积分说明 647736
邀请新用户注册赠送积分活动 623187