Rapid screening based on machine learning and molecular docking of umami peptides from porcine bone

鲜味 化学 对接(动物) 计算生物学 生物化学 人工智能 生物信息学 计算机科学 医学 生物 品味 护理部
作者
Qing Liu,Xinchang Gao,Daodong Pan,Zhu Liu,Chaogeng Xiao,Lihui Du,Zhendong Cai,Wenjing Lü,Yali Dang,Ying Zou
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:103 (8): 3915-3925 被引量:25
标识
DOI:10.1002/jsfa.12319
摘要

Abstract BACKGROUND The traditional screening method for umami peptide, extracted from porcine bone, was labor‐intensive and time‐consuming. In this study, the rapid screening method and molecular mechanism of umami peptide was investigated. RESULTS This article showed that a more precisely rapid screening method with composite machine learning and molecular docking was used to screen the potential umami peptide from porcine bone. As reference, 24 reported umami peptides were predicated by composite machine learning, with the accuracy of 86.7%. In this study, potential umami peptide sequences from porcine bone were screened by UMPred‐FRL, Umami‐MRNN Demo, and molecular docking was used to provide further screening. Finally, nine peptides were screened and verified as umami peptides by this method: LREY, HEAL, LAKVH, FQKVVA, HVKELE, AEVKKAP, EAVEKPQS, KALSEEL and KKMFETES. The hydrogen bonding was deemed to be the main interaction force with receptor T1R3, and domain binding sites were Ser146, His121 and Glu277. The result demonstrated the feasibility of machine learning assisted T1R1/T1R3 receptor for rapid screening umami peptides. The screening method would not only adapt to screen umami peptides from porcine bone but possibly applied for other sources. It also provided a reference for rapid screening of umami peptides. CONCLUSION The manuscript lays a rapid screening method in screening umami peptide, and nine umami peptides from porcine bone were screened and identified. © 2022 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧芷巧发布了新的文献求助10
2秒前
杨梅完成签到 ,获得积分10
3秒前
衣蝉完成签到 ,获得积分10
8秒前
科研通AI5应助ani采纳,获得10
9秒前
勤劳小懒虫完成签到 ,获得积分10
9秒前
13秒前
13秒前
13秒前
13秒前
13秒前
细心健柏完成签到 ,获得积分10
15秒前
猫的毛完成签到 ,获得积分10
21秒前
lili完成签到 ,获得积分10
24秒前
yu_z完成签到 ,获得积分10
26秒前
Yanzhi完成签到,获得积分10
27秒前
Damon完成签到 ,获得积分10
28秒前
Zzy完成签到 ,获得积分10
31秒前
优秀的尔风完成签到,获得积分20
31秒前
愛研究完成签到,获得积分10
36秒前
蚂蚁踢大象完成签到 ,获得积分10
36秒前
一颗煤炭完成签到 ,获得积分10
40秒前
43秒前
萝卜家大小姐完成签到,获得积分10
48秒前
荼白完成签到 ,获得积分10
49秒前
lhn完成签到 ,获得积分10
53秒前
raiychemj完成签到,获得积分10
55秒前
fatcat完成签到,获得积分10
59秒前
三脸茫然完成签到 ,获得积分10
1分钟前
Eusha完成签到,获得积分10
1分钟前
zhangguo完成签到 ,获得积分10
1分钟前
白白完成签到 ,获得积分10
1分钟前
困困困完成签到 ,获得积分10
1分钟前
WangJL完成签到 ,获得积分10
1分钟前
CH完成签到,获得积分10
1分钟前
青山完成签到,获得积分10
1分钟前
ziyu完成签到 ,获得积分10
1分钟前
OVERSEER完成签到,获得积分20
1分钟前
ccy完成签到 ,获得积分10
1分钟前
Akim应助OVERSEER采纳,获得10
1分钟前
喜悦的香之完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3686811
求助须知:如何正确求助?哪些是违规求助? 3237188
关于积分的说明 9829597
捐赠科研通 2949071
什么是DOI,文献DOI怎么找? 1617244
邀请新用户注册赠送积分活动 764147
科研通“疑难数据库(出版商)”最低求助积分说明 738360