微生物
纳米材料
纳米技术
环境科学
生化工程
材料科学
生物
工程类
细菌
遗传学
作者
Muhammad Shamim Khan,Mirza Albash Baig,Tian Meng,Bowen Li,Guoqing Feng,Run Yang,Yang Bai,Bin Zheng
标识
DOI:10.1002/adtp.202400425
摘要
Abstract Recent advances in cancer treatments such as targeted therapy and immunotherapy, have brought hope for curing a variety of cancers. However, there are ongoing challenges such as poor targeting, biocompatibility and biosafety. Engineered bacteria can cope with these problems, providing a unique therapeutic approach for the treatment of tumors. Nanotechnology offers the potential to modify the surface of bacteria, and the use of biofilm and coating technology to physically encapsulate bacteria can help bacteria escape the host immune system and improve the efficiency and safety of drug delivery. Synthetic biology and genetic engineering technologies can treat bacteria as “robotic factories” to produce and deliver anti‐cancer drugs, including anti‐tumor cytokines, immunomodulators, prodrug enzymes, and so on, according to clinical needs. Engineered bacteria therapies can be used either as monotherapy or in combination with other anticancer therapies to achieve better clinical outcomes. In this review, it introduce and summarize the processing and modification methods of engineered bacteria for cancer targeted therapy, and summarize and analyze the current clinical trials of engineered bacteria for cancer targeted therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI