Res‐Net‐Based Modeling and Morphologic Analysis of Deep Medullary Veins Using Multi‐Echo GRE at 7 T MRI

医学 磁共振成像 分割 核医学 数学 核磁共振 人工智能 模式识别(心理学) 计算机科学 物理 放射科
作者
Zhixin Li,Liang Li,Jinyuan Zhang,Xueyi Fan,Yishuang Yang,Hua Yang,Qi Wang,Jing An,Rong Xue,Yan Zhuo,Hairong Qian,Zihao Zhang
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:38 (6)
标识
DOI:10.1002/nbm.70042
摘要

ABSTRACT The pathological changes in deep medullary veins (DMVs) have been reported in various diseases. However, accurate modeling and quantification of DMVs remain challenging. We aim to propose and assess an automated approach for modeling and quantifying DMVs at 7 Tesla (7 T) MRI. A multi‐echo‐input Res‐Net was developed for vascular segmentation, and a minimum path loss function was used for modeling and quantifying the geometric parameter of DMVs. Twenty‐one patients diagnosed as subcortical vascular dementia (SVaD) and 20 condition matched controls were included in this study. The amplitude and phase images of gradient echo with five echoes were acquired at 7 T. Ten GRE images were manually labeled by two neurologists and compared with the results obtained by our proposed method. Independent samples t test and Pearson correlation were used for statistical analysis in our study, and p value < 0.05 was considered significant. No significant offset was found in centerlines obtained by human labeling and our algorithm ( p = 0.734). The length difference between the proposed method and manual labeling was smaller than the error between different clinicians ( p < 0.001). Patients with SVaD exhibited fewer DMVs (mean difference = −60.710 ± 21.810, p = 0.011) and higher curvature (mean difference = 0.12 ± 0.022, p < 0.0001), corresponding to their higher Vascular Dementia Assessment Scale‐Cog (VaDAS‐Cog) scores (mean difference = 4.332 ± 1.992, p = 0.036) and lower Mini‐Mental State Examination (MMSE) (mean difference = −3.071 ± 1.443, p = 0.047). The MMSE scores were positively correlated with the numbers of DMVs ( r = 0.437, p = 0.037) and were negatively correlated with the curvature ( r = −0.426, p = 0.042). In summary, we proposed a novel framework for automated quantifying the morphologic parameters of DMVs. These characteristics of DMVs are expected to help the research and diagnosis of cerebral small vessel diseases with DMV lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助从容幻儿采纳,获得10
1秒前
幸福的千琴完成签到,获得积分10
1秒前
anlikek完成签到,获得积分10
1秒前
木木水完成签到,获得积分10
2秒前
cheng完成签到 ,获得积分10
4秒前
周芷卉完成签到 ,获得积分10
5秒前
5秒前
赘婿应助Tonald Yang采纳,获得10
8秒前
沉静的乘风完成签到,获得积分10
9秒前
Dream完成签到,获得积分0
9秒前
布吉岛呀完成签到 ,获得积分10
10秒前
11秒前
hyw完成签到 ,获得积分10
11秒前
terry完成签到 ,获得积分10
11秒前
clare完成签到 ,获得积分10
12秒前
积极废物完成签到 ,获得积分10
13秒前
情殇完成签到,获得积分20
15秒前
15秒前
Hudson完成签到,获得积分10
16秒前
叶未晞yi完成签到,获得积分10
19秒前
Liangyu完成签到,获得积分10
19秒前
20秒前
施耐德发布了新的文献求助10
21秒前
林家小弟完成签到,获得积分10
21秒前
22秒前
机智的锦程完成签到 ,获得积分10
23秒前
小和发布了新的文献求助10
24秒前
jimmyyyyyy发布了新的文献求助10
25秒前
达斯维完成签到,获得积分10
28秒前
科研通AI2S应助施耐德采纳,获得10
29秒前
whisper完成签到 ,获得积分10
29秒前
可靠的书本完成签到,获得积分10
31秒前
科研螺丝完成签到 ,获得积分10
31秒前
蜂蜜完成签到,获得积分10
33秒前
花阳年华完成签到 ,获得积分10
34秒前
shepherd完成签到,获得积分10
34秒前
诸葛烤鸭完成签到,获得积分10
35秒前
xiaofenzi完成签到,获得积分10
35秒前
上下完成签到 ,获得积分10
35秒前
明月完成签到 ,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746236
求助须知:如何正确求助?哪些是违规求助? 3289015
关于积分的说明 10061941
捐赠科研通 3005369
什么是DOI,文献DOI怎么找? 1650236
邀请新用户注册赠送积分活动 785753
科研通“疑难数据库(出版商)”最低求助积分说明 751269