Res‐Net‐Based Modeling and Morphologic Analysis of Deep Medullary Veins Using Multi‐Echo GRE at 7 T MRI

医学 磁共振成像 分割 核医学 数学 核磁共振 人工智能 模式识别(心理学) 计算机科学 物理 放射科
作者
Zhixin Li,Liang Li,Jinyuan Zhang,Xueyi Fan,Yishuang Yang,Hua Yang,Qi Wang,Jing An,Rong Xue,Yan Zhuo,Hairong Qian,Zihao Zhang
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:38 (6)
标识
DOI:10.1002/nbm.70042
摘要

ABSTRACT The pathological changes in deep medullary veins (DMVs) have been reported in various diseases. However, accurate modeling and quantification of DMVs remain challenging. We aim to propose and assess an automated approach for modeling and quantifying DMVs at 7 Tesla (7 T) MRI. A multi‐echo‐input Res‐Net was developed for vascular segmentation, and a minimum path loss function was used for modeling and quantifying the geometric parameter of DMVs. Twenty‐one patients diagnosed as subcortical vascular dementia (SVaD) and 20 condition matched controls were included in this study. The amplitude and phase images of gradient echo with five echoes were acquired at 7 T. Ten GRE images were manually labeled by two neurologists and compared with the results obtained by our proposed method. Independent samples t test and Pearson correlation were used for statistical analysis in our study, and p value < 0.05 was considered significant. No significant offset was found in centerlines obtained by human labeling and our algorithm ( p = 0.734). The length difference between the proposed method and manual labeling was smaller than the error between different clinicians ( p < 0.001). Patients with SVaD exhibited fewer DMVs (mean difference = −60.710 ± 21.810, p = 0.011) and higher curvature (mean difference = 0.12 ± 0.022, p < 0.0001), corresponding to their higher Vascular Dementia Assessment Scale‐Cog (VaDAS‐Cog) scores (mean difference = 4.332 ± 1.992, p = 0.036) and lower Mini‐Mental State Examination (MMSE) (mean difference = −3.071 ± 1.443, p = 0.047). The MMSE scores were positively correlated with the numbers of DMVs ( r = 0.437, p = 0.037) and were negatively correlated with the curvature ( r = −0.426, p = 0.042). In summary, we proposed a novel framework for automated quantifying the morphologic parameters of DMVs. These characteristics of DMVs are expected to help the research and diagnosis of cerebral small vessel diseases with DMV lesions.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sivledy完成签到,获得积分10
2秒前
希望天下0贩的0应助djdh采纳,获得10
6秒前
16秒前
afrex完成签到,获得积分10
17秒前
Lio发布了新的文献求助10
21秒前
小智0921完成签到,获得积分10
22秒前
妞妞叫小南完成签到,获得积分10
29秒前
Zz完成签到 ,获得积分10
31秒前
35秒前
36秒前
36秒前
36秒前
36秒前
36秒前
36秒前
小马甲应助科研通管家采纳,获得10
37秒前
37秒前
rui应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
糟糕的颜完成签到 ,获得积分10
38秒前
wayne完成签到 ,获得积分10
43秒前
SciGPT应助程昱采纳,获得10
45秒前
48秒前
善学以致用应助cc采纳,获得10
51秒前
三方完成签到,获得积分10
52秒前
53秒前
李多意完成签到,获得积分10
53秒前
53秒前
huahua完成签到 ,获得积分10
55秒前
55秒前
Jasmineyfz完成签到 ,获得积分10
56秒前
求知小生完成签到 ,获得积分10
58秒前
程昱发布了新的文献求助10
59秒前
2022H发布了新的文献求助10
59秒前
1分钟前
年轻真好啊完成签到,获得积分10
1分钟前
cc发布了新的文献求助10
1分钟前
从从余余完成签到 ,获得积分10
1分钟前
科目三应助猪头采纳,获得10
1分钟前
kaier完成签到 ,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852066
求助须知:如何正确求助?哪些是违规求助? 6275741
关于积分的说明 15627645
捐赠科研通 4967992
什么是DOI,文献DOI怎么找? 2678855
邀请新用户注册赠送积分活动 1623112
关于科研通互助平台的介绍 1579503