亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence applied to electrocardiogram to rule out acute myocardial infarction: the ROMIAE multicentre study

医学 狼牙棒 心肌梗塞 内科学 接收机工作特性 心脏病学 急诊科 肌钙蛋白 前瞻性队列研究 经皮冠状动脉介入治疗 精神科
作者
Min Sung Lee,Tae Gun Shin,Young Ju Lee,Dong Hoon Kim,Sung‐Hyuk Choi,Hanjin Cho,Mi-Jin Lee,Ki Young Jeong,Won Young Kim,Young Gi Min,Chul Han,Jae Chol Yoon,Eujene Jung,Woo Jeong Kim,Chiwon Ahn,Jeong Yeol Seo,Tae Ho Lim,Jae Seong Kim,Jeff Choi,Joon‐myoung Kwon
出处
期刊:European Heart Journal [Oxford University Press]
标识
DOI:10.1093/eurheartj/ehaf004
摘要

Emerging evidence supports artificial intelligence-enhanced electrocardiogram (AI-ECG) for detecting acute myocardial infarction (AMI), but real-world validation is needed. The aim of this study was to evaluate the performance of AI-ECG in detecting AMI in the emergency department (ED). The Rule-Out acute Myocardial Infarction using Artificial intelligence Electrocardiogram analysis (ROMIAE) study is a prospective cohort study conducted in the Republic of Korea from March 2022 to October 2023, involving 18 university-level teaching hospitals. Adult patients presenting to the ED within 24 h of symptom onset concerning for AMI were assessed. Exposure included AI-ECG score, HEART score, GRACE 2.0 score, high-sensitivity troponin level, and Physician AMI score. The primary outcome was diagnosis of AMI during index admission, and the secondary outcome was 30 day major adverse cardiovascular event (MACE). The study population comprised 8493 adults, of whom 1586 (18.6%) were diagnosed with AMI. The area under the receiver operating characteristic curve for AI-ECG was 0.878 (95% CI, 0.868-0.888), comparable with the HEART score (0.877; 95% CI, 0.869-0.886) and superior to the GRACE 2.0 score, high-sensitivity troponin level, and Physician AMI score. For predicting 30 day MACE, AI-ECG (area under the receiver operating characteristic, 0.866; 95% CI, 0.856-0.877) performed comparably with the HEART score (0.858; 95% CI, 0.848-0.868). The integration of the AI-ECG improved risk stratification and AMI discrimination, with a net reclassification improvement of 19.6% (95% CI, 17.38-21.89) and a C-index of 0.926 (95% CI, 0.919-0.933), compared with the HEART score alone. In this multicentre prospective study, the AI-ECG demonstrated diagnostic accuracy and predictive power for AMI and 30 day MACE, which was similar to or better than that of traditional risk stratification methods and ED physicians.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
azuref完成签到,获得积分20
6秒前
伍佰发布了新的文献求助10
7秒前
JamesPei应助伍佰采纳,获得10
14秒前
kmmu0611发布了新的文献求助10
19秒前
科研通AI5应助kmmu0611采纳,获得10
1分钟前
李爱国应助花痴的裘采纳,获得10
1分钟前
大个应助一只西瓜茶采纳,获得10
1分钟前
1分钟前
花痴的裘发布了新的文献求助10
1分钟前
1分钟前
完美世界应助zdz采纳,获得10
1分钟前
俭朴蜜蜂发布了新的文献求助10
1分钟前
在水一方应助执着的忻采纳,获得10
1分钟前
Qvby3完成签到 ,获得积分10
1分钟前
1分钟前
zdz发布了新的文献求助10
1分钟前
fire应助三金采纳,获得10
2分钟前
科研通AI2S应助mochi采纳,获得10
2分钟前
2分钟前
haru96完成签到 ,获得积分10
2分钟前
2分钟前
mochi发布了新的文献求助10
2分钟前
浦肯野应助mochi采纳,获得30
2分钟前
自信松思完成签到 ,获得积分10
2分钟前
2分钟前
Cristina2024完成签到,获得积分10
3分钟前
鹿鹿发布了新的文献求助150
3分钟前
脑洞疼应助0527采纳,获得10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
内向士萧发布了新的文献求助10
3分钟前
3分钟前
Owen应助鹿鹿采纳,获得10
3分钟前
内向士萧完成签到,获得积分10
3分钟前
0527发布了新的文献求助10
3分钟前
平淡的秋珊完成签到 ,获得积分10
3分钟前
3分钟前
夏天的蜜雪冰城完成签到 ,获得积分10
3分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484408
求助须知:如何正确求助?哪些是违规求助? 3073433
关于积分的说明 9130940
捐赠科研通 2765049
什么是DOI,文献DOI怎么找? 1517559
邀请新用户注册赠送积分活动 702147
科研通“疑难数据库(出版商)”最低求助积分说明 701156