Novel AI applications in systematic review: GPT-4 assisted data extraction, analysis, review of bias

数据提取 一致性 可比性 计算机科学 荟萃分析 系统回顾 统计 数据挖掘 人工智能 医学 梅德林 数学 内科学 生物 生物化学 组合数学
作者
Jin K. Kim,Michael Chua,Tian Li,Mandy Rickard,Armando J. Lorenzo
出处
期刊:BMJ evidence-based medicine [BMJ]
卷期号:: bmjebm-113066
标识
DOI:10.1136/bmjebm-2024-113066
摘要

Objective To assess custom GPT-4 performance in extracting and evaluating data from medical literature to assist in the systematic review (SR) process. Design A proof-of-concept comparative study was conducted to assess the accuracy and precision of custom GPT-4 models against human-performed reviews of randomised controlled trials (RCTs). Setting Four custom GPT-4 models were developed, each specialising in one of the following areas: (1) extraction of study characteristics, (2) extraction of outcomes, (3) extraction of bias assessment domains and (4) evaluation of risk of bias using results from the third GPT-4 model. Model outputs were compared against data from four SRs conducted by human authors. The evaluation focused on accuracy in data extraction, precision in replicating outcomes and agreement levels in risk of bias assessments. Participants Among four SRs chosen, 43 studies were retrieved for data extraction evaluation. Additionally, 17 RCTs were selected for comparison of risk of bias assessments, where both human comparator SRs and an analogous SR provided assessments for comparison. Intervention Custom GPT-4 models were deployed to extract data and evaluate risk of bias from selected studies, and their outputs were compared to those generated by human reviewers. Main outcome measures Concordance rates between GPT-4 outputs and human-performed SRs in data extraction, effect size comparability and inter/intra-rater agreement in risk of bias assessments. Results When comparing the automatically extracted data to the first table of study characteristics from the published review, GPT-4 showed 88.6% concordance with the original review, with <5% discrepancies due to inaccuracies or omissions. It exceeded human accuracy in 2.5% of instances. Study outcomes were extracted and pooling of results showed comparable effect sizes to comparator SRs. A review of bias assessment using GPT-4 showed fair-moderate but significant intra-rater agreement (ICC=0.518, p<0.001) and inter-rater agreements between human comparator SR (weighted kappa=0.237) and the analogous SR (weighted kappa=0.296). In contrast, there was a poor agreement between the two human-performed SRs (weighted kappa=0.094). Conclusion Customized GPT-4 models perform well in extracting precise data from medical literature with potential for utilization in review of bias. While the evaluated tasks are simpler than the broader range of SR methodologies, they provide an important initial assessment of GPT-4's capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助阳光向秋采纳,获得10
刚刚
1秒前
研友_VZG7GZ应助314gjj采纳,获得10
3秒前
3秒前
上官若男应助小李采纳,获得10
3秒前
JJ索发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助core采纳,获得10
5秒前
小伙不错发布了新的文献求助10
6秒前
光亮的忆山完成签到,获得积分20
6秒前
sss完成签到,获得积分10
8秒前
秀丽绮彤发布了新的文献求助10
8秒前
123~!完成签到 ,获得积分10
8秒前
9秒前
欣喜尔安完成签到,获得积分10
9秒前
9秒前
Enero完成签到 ,获得积分10
9秒前
10秒前
852应助beard采纳,获得10
10秒前
乐乐应助舞涤采纳,获得10
10秒前
欣慰的以云完成签到,获得积分10
11秒前
夏日完成签到,获得积分10
11秒前
小帅完成签到 ,获得积分10
13秒前
13秒前
知道发布了新的文献求助10
14秒前
14秒前
yunyii发布了新的文献求助10
14秒前
小二郎应助醒醒采纳,获得10
14秒前
夏日发布了新的文献求助10
15秒前
16秒前
大喵完成签到,获得积分20
16秒前
桐桐应助专注大门采纳,获得10
17秒前
阳光向秋发布了新的文献求助10
17秒前
EricaLee9812完成签到,获得积分10
17秒前
科研通AI5应助Zy采纳,获得10
18秒前
小红发布了新的文献求助10
18秒前
叶凡发布了新的文献求助10
18秒前
18秒前
仲夏发布了新的文献求助10
19秒前
无花果应助心灵美银耳汤采纳,获得10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749356
求助须知:如何正确求助?哪些是违规求助? 3292560
关于积分的说明 10077033
捐赠科研通 3007979
什么是DOI,文献DOI怎么找? 1651945
邀请新用户注册赠送积分活动 786910
科研通“疑难数据库(出版商)”最低求助积分说明 751906