Multiagent Path Finding Using Deep Reinforcement Learning Coupled With Hot Supervision Contrastive Loss

强化学习 稳健性(进化) 计算机科学 人工智能 多智能体系统 分布式计算 路径(计算) 计算机网络 生物化学 化学 基因
作者
Lin Chen,Yaonan Wang,Yang Mo,Zhiqiang Miao,Hesheng Wang,Mingtao Feng,Sifei Wang
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (7): 7032-7040 被引量:13
标识
DOI:10.1109/tie.2022.3206745
摘要

Multiagent path finding (MAPF) is employed to find collision-free paths to guide agents traveling from an initial to a target position. The advanced decentralized approach utilizes communication between agents to improve their performance in environments with high-density obstacles. However, it dramatically reduces the robustness of multiagent systems. To overcome this difficulty, we propose a novel method for solving MAPF problems. In this method, expert data are transformed into supervised signals by proposing a hot supervised contrastive loss, which is combined with reinforcement learning to teach fully-decentralized policies. Agents reactively plan paths online in a partially observable world while exhibiting implicit coordination without communication with others. We introduce the self-attention mechanism in the policy network, which improves the ability of the policy network to extract collaborative information between agents from the observation data. By designing simulation experiments, we demonstrate that the learned policy achieved good performance without communication between agents. Furthermore, real-world application experiments demonstrate the effectiveness of our method in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zq完成签到 ,获得积分10
1秒前
2秒前
orixero应助lvzhihao采纳,获得10
3秒前
mingyueye完成签到,获得积分10
3秒前
ding应助李李采纳,获得10
4秒前
oddope完成签到,获得积分20
5秒前
阿六儿完成签到,获得积分10
5秒前
6秒前
杜康完成签到,获得积分10
6秒前
腿腿完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
浮游应助伤脑筋采纳,获得10
8秒前
10秒前
科研通AI6应助乌龟娟采纳,获得10
11秒前
12秒前
依依牙我在做什么给依依牙我在做什么的求助进行了留言
12秒前
12秒前
13秒前
13秒前
老迟到的秋完成签到,获得积分10
13秒前
NexusExplorer应助美好斓采纳,获得10
14秒前
girly完成签到,获得积分10
16秒前
16秒前
bkagyin应助闪闪的问蕊采纳,获得10
17秒前
小羊肖恩发布了新的文献求助10
17秒前
17秒前
Logan发布了新的文献求助10
17秒前
17秒前
keyakey发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
19秒前
李健的小迷弟应助灵散采纳,获得10
20秒前
溯溯完成签到 ,获得积分10
21秒前
兴奋千秋发布了新的文献求助10
21秒前
花深粥完成签到 ,获得积分10
21秒前
22秒前
丘比特应助wzc采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462518
求助须知:如何正确求助?哪些是违规求助? 4567225
关于积分的说明 14309649
捐赠科研通 4493103
什么是DOI,文献DOI怎么找? 2461427
邀请新用户注册赠送积分活动 1450522
关于科研通互助平台的介绍 1425854