内科学
内分泌学
氧化应激
医学
糖尿病
海马体
海马结构
胰岛素抵抗
单调的工作
作者
Zhongyuan Zhou,Meng Wang,Chenyu Huang,Yan Li,Lin Gao,Yandong Zhu,Changjiang Ying,Xiaoyan Zhou
标识
DOI:10.1016/j.brainresbull.2022.09.018
摘要
Patients with diabetes mellitus (DM) have an increased risk of diabetic encephalopathy symptoms such as depressive-like behaviour and cognitive impairment. Exercise is an effective strategy for preventing and treating DM and diabetic complications. The aim of this study is to investigate the effects and potential mechanisms of treadmill exercise training on diabetes-induced depressive-like behavior and cognitive impairment in db/db mice. In this study, the mice were divided into three groups (n = 10 per group) as follows: healthy-sedentary (db/m), diabetes-sedentary (db/db), and diabetes-treadmill exercise training (db/db-TET). The db/db-TET mice were performed five days per week at a speed of 8 m/min for 60 min/day for 8 weeks, following which body weight, fasting blood glucose, insulin resistance, behavioral, synaptic ultrastructure, oxidative stress, apoptotic signaling, and inflammatory responses were evaluated. As a result, treadmill exercise training significantly decreased body weight and fasting blood glucose levels, increased insulin sensitivity, protected synaptic ultrastructure, reduced depression-like behavior, and improved learning and memory deficits in db/db mice. In addition, treadmill exercise training significantly suppressed NOX2-mediated oxidative stress, resulting in a decrease in NOX2-dependent ROS generation in the db/db mouse hippocampus CA1 region. Reduced ROS generation prevented the apoptotic signaling pathway and NLRP3 inflammasome activation, thereby ameliorating hippocampus neuronal damage. In summary, the results indicated that treadmill exercise training significantly ameliorates hippocampus injury by suppressing oxidative stress-induced apoptosis and NLRP3 inflammasome activation, consequently ameliorating diabetes-induced depressive-like behavior and cognitive impairment in db/db mice.
科研通智能强力驱动
Strongly Powered by AbleSci AI