作者
Joana Damas,Marco Corbo,Jaebum Kim,Jason Turner-Maier,Marta Farré,Denis M. Larkin,Oliver A. Ryder,Cynthia Steiner,Marlys L. Houck,Shaune Hall,Lily Shiue,Stephen Thomas,Thomas Swale,Mark Daly,Jonas Korlach,Marcela Uliano-Silva,Camila J. Mazzoni,Bruce W. Birren,Diane P. Genereux,Jeremy Johnson,Kerstin Lindblad-Toh,Elinor K. Karlsson,Martin T. Nweeia,Rebecca N. Johnson,Harris A. Lewin,Gregory Andrews,Joel C. Armstrong,Matteo Bianchi,Bruce W. Birren,Kevin R. Bredemeyer,Ana M. Breit,Matthew J. Christmas,Hiram Clawson,Joana Damas,Federica Di Palma,Mark Diekhans,Michael X. Dong,Eduardo Eizirik,Kaili Fan,Cornelia Fanter,Nicole M. Foley,Karin Forsberg-Nilsson,Carlos J. Garcia,John Gatesy,Steven Gazal,Diane P. Genereux,Linda Goodman,Jenna Grimshaw,Michaela K. Halsey,Andrew J. Harris,Glenn Hickey,Michael Hiller,Allyson G. Hindle,Robert M. Hubley,Graham M. Hughes,Jeremy Johnson,David Juan,Irene M. Kaplow,Elinor K. Karlsson,Kathleen C. Keough,Bogdan Kirilenko,Klaus-Peter Koepfli,Jennifer M. Korstian,Amanda Kowalczyk,Sergey V. Kozyrev,Alyssa J. Lawler,Colleen Lawless,Thomas Lehmann,Danielle L. Levesque,Harris A. Lewin,Xue Li,Abigail Lind,Kerstin Lindblad-Toh,Ava Mackay-Smith,Voichita D. Marinescu,Tomas Marques-Bonet,Victor C. Mason,Jennifer R. S. Meadows,Wynn K. Meyer,Jill E. Moore,Lucas R. Moreira,Diana D. Moreno-Santillan,Kathleen M. Morrill,Gerard Muntané,William J. Murphy,Arcadi Navarro,Martin Nweeia,Sylvia Ortmann,Austin Osmanski,Benedict Paten,Nicole S. Paulat,Andreas R. Pfenning,BaDoi N. Phan,Katherine S. Pollard,Henry E. Pratt,David A. Ray,Steven K. Reilly,Jeb R. Rosen,Irina Ruf,Louise Ryan
摘要
Decrypting the rearrangements that drive mammalian chromosome evolution is critical to understanding the molecular bases of speciation, adaptation, and disease susceptibility. Using 8 scaffolded and 26 chromosome-scale genome assemblies representing 23/26 mammal orders, we computationally reconstructed ancestral karyotypes and syntenic relationships at 16 nodes along the mammalian phylogeny. Three different reference genomes (human, sloth, and cattle) representing phylogenetically distinct mammalian superorders were used to assess reference bias in the reconstructed ancestral karyotypes and to expand the number of clades with reconstructed genomes. The mammalian ancestor likely had 19 pairs of autosomes, with nine of the smallest chromosomes shared with the common ancestor of all amniotes (three still conserved in extant mammals), demonstrating a striking conservation of synteny for ∼320 My of vertebrate evolution. The numbers and types of chromosome rearrangements were classified for transitions between the ancestral mammalian karyotype, descendent ancestors, and extant species. For example, 94 inversions, 16 fissions, and 14 fusions that occurred over 53 My differentiated the therian from the descendent eutherian ancestor. The highest breakpoint rate was observed between the mammalian and therian ancestors (3.9 breakpoints/My). Reconstructed mammalian ancestor chromosomes were found to have distinct evolutionary histories reflected in their rates and types of rearrangements. The distributions of genes, repetitive elements, topologically associating domains, and actively transcribed regions in multispecies homologous synteny blocks and evolutionary breakpoint regions indicate that purifying selection acted over millions of years of vertebrate evolution to maintain syntenic relationships of developmentally important genes and regulatory landscapes of gene-dense chromosomes.