Shakespeare Machine: New AI-Based Technologies for Textual Analysis

计算机科学 人工智能 艺术 自然语言处理
作者
Carl Ehrett,Lucian Ghita,D. Ranwala,A.A.A. Menezes
出处
期刊:Digital Scholarship in the Humanities [Oxford University Press]
卷期号:39 (2): 522-531 被引量:1
标识
DOI:10.1093/llc/fqae021
摘要

Abstract This article demonstrates a method using tools from the field of Natural Language Processing (NLP) to aid in analyzing theatrical texts and similar works. The method deploys pre-trained large language model neural networks to gather metadata for a text that is amenable to downstream statistical analyses surfacing patterns of interest in character dialogue. We specifically focus on Shakespeare’s works, collecting metadata in the form of sentiment and emotion scores for each line of his plays. In addition to sentiment and emotion scores produced by NLP models, we also directly gather metadata such as genre, line length, and character gender. We show how these metadata may be used to illuminate a number of interesting patterns in Shakespearean character which may be difficult to detect from a direct reading of the texts. We use these metadata to expose statistically significant relationships in Shakespeare between character gender and the emotional content of that character’s dialogue, controlling for genre. We also present here the publicly available dataset that we have compiled to perform these analyses. The data collects text from Shakespeare’s plays along with a variety of metadata useful for this and other forms of analysis of Shakespeare’s works. The methodology demonstrated here may be extended to other varieties of metadata provided by large NLP models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助处处铃铛响采纳,获得10
1秒前
1秒前
Wind发布了新的文献求助10
1秒前
橘子29完成签到,获得积分10
1秒前
传奇3应助犯困嫌疑人采纳,获得200
1秒前
cpli完成签到,获得积分10
2秒前
2284456374完成签到,获得积分10
2秒前
YC发布了新的文献求助10
2秒前
3秒前
海峰荣完成签到,获得积分10
3秒前
无疆_行者发布了新的文献求助10
4秒前
4秒前
5秒前
虚心岂愈发布了新的文献求助10
5秒前
LJDAISQ发布了新的文献求助10
6秒前
嘟嘟嘟嘟完成签到,获得积分10
7秒前
幻天游发布了新的文献求助10
7秒前
ZHANGJIAN完成签到,获得积分10
7秒前
风清扬发布了新的文献求助10
7秒前
Jasper应助Wind采纳,获得10
9秒前
9秒前
10完成签到,获得积分10
9秒前
袁气小笼包完成签到,获得积分10
10秒前
10秒前
10秒前
海峰荣发布了新的文献求助10
11秒前
风风风发布了新的文献求助10
11秒前
jingyi完成签到,获得积分10
11秒前
失眠白容完成签到,获得积分20
12秒前
12秒前
幸福代柔发布了新的文献求助20
12秒前
12秒前
科目三应助gaojianfei采纳,获得10
13秒前
子訡完成签到 ,获得积分10
13秒前
爱拉臭粑完成签到,获得积分10
13秒前
Tizzy发布了新的文献求助10
13秒前
Leonard完成签到,获得积分10
13秒前
14秒前
royan发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285299
求助须知:如何正确求助?哪些是违规求助? 4438487
关于积分的说明 13817325
捐赠科研通 4319766
什么是DOI,文献DOI怎么找? 2371149
邀请新用户注册赠送积分活动 1366693
关于科研通互助平台的介绍 1330152