A novel bimodal feature fusion network-based deep learning model with intelligent fusion gate mechanism for short-term photovoltaic power point-interval forecasting

光伏系统 融合 期限(时间) 人工智能 特征(语言学) 机制(生物学) 区间(图论) 融合机制 计算机科学 点(几何) 功率(物理) 人工神经网络 工程类 电气工程 物理 脂质双层融合 数学 哲学 语言学 几何学 量子力学 组合数学
作者
Zhi-Feng Liu,Xiaorui Chen,Ya-He Huang,Xing-Fu Luo,Shu-Rui Zhang,Guodong You,Xiaoyong Qiang,Qing Kang
出处
期刊:Energy [Elsevier]
卷期号:303: 131947-131947 被引量:1
标识
DOI:10.1016/j.energy.2024.131947
摘要

Under the goals of carbon neutrality and peak carbon emissions, photovoltaic (PV) power generation is widely valued for its clean and green characteristics. However, the uncertainty and randomness of PV power pose challenges to energy management. Therefore, this study proposed a novel bimodal feature fusion network-based deep learning model with an intelligent fusion gate mechanism for short-term photovoltaic power point-interval forecasting. First, a threshold-guided iNNE-based outlier detection and repair method is designed for preprocessing PV data. Second, a bimodal feature fusion network was proposed to extract global and local features from PV power sequences, and the environmental factors-based rime optimization algorithm with growth mutation strategy and humidity perception mechanism was devised to optimize model's hyperparameters. Additionally, a photovoltaic power interval prediction model with a volatility segmentation strategy was introduced. Finally, the effectiveness of the proposed model, algorithm, and strategies was validated using measured datasets. The results demonstrated that under various weather conditions, the proposed model achieved point prediction evaluation metrics with an R2 exceeding 98% and a prediction interval evaluation metric with a Prediction Interval Coverage Probability of 85.07%. The obtained outcomes contribute to providing a basis for decision-making in the scientific scheduling and management of PV power systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赫凡发布了新的文献求助30
刚刚
1秒前
所所应助多情翠丝采纳,获得10
2秒前
2秒前
舒夜发布了新的文献求助10
2秒前
Lucas应助Joan采纳,获得10
2秒前
yue发布了新的文献求助10
2秒前
daker发布了新的文献求助10
3秒前
汉堡包应助Yasmine采纳,获得10
3秒前
3秒前
3秒前
安呢发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
Cyrus完成签到,获得积分10
7秒前
7秒前
Cln完成签到,获得积分10
7秒前
FUsir完成签到,获得积分10
8秒前
8秒前
赵佳璐发布了新的文献求助10
9秒前
漂亮书竹完成签到,获得积分10
10秒前
10秒前
咪呀完成签到,获得积分10
10秒前
科研通AI2S应助lzb采纳,获得10
10秒前
燕尔蓝完成签到,获得积分10
10秒前
顾矜应助zhaoyizhaoyi采纳,获得10
11秒前
冯晓静完成签到 ,获得积分10
11秒前
gavinppp发布了新的文献求助10
12秒前
舒夜完成签到,获得积分10
12秒前
Lucas应助积极方盒采纳,获得30
12秒前
Huang完成签到,获得积分10
13秒前
Ryan完成签到,获得积分10
13秒前
13秒前
haru完成签到,获得积分10
14秒前
14秒前
15秒前
Owen应助deanna采纳,获得10
15秒前
15秒前
wanci应助好吃的蛋挞采纳,获得10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147351
求助须知:如何正确求助?哪些是违规求助? 2798580
关于积分的说明 7829767
捐赠科研通 2455324
什么是DOI,文献DOI怎么找? 1306666
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567