Energy-efficient dynamic sensor time series classification for edge health devices

计算机科学 人工智能 机器学习 能量(信号处理) 高效能源利用 时间序列 支持向量机 数据挖掘 电气工程 工程类 统计 数学
作者
Y Wang,Le Sun
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:254: 108268-108268
标识
DOI:10.1016/j.cmpb.2024.108268
摘要

Time series data plays a crucial role in the realm of the Internet of Things Medical (IoMT). Through machine learning (ML) algorithms, online time series classification in IoMT systems enables reliable real-time disease detection. Deploying ML algorithms on edge health devices can reduce latency and safeguard patients' privacy. However, the limited computational resources of these devices underscore the need for more energy-efficient algorithms. Furthermore, online time series classification inevitably faces the challenges of concept drift (CD) and catastrophic forgetting (CF). To address these challenges, this study proposes an energy-efficient Online Time series classification algorithm that can solve CF and CD for health devices, called OTCD. OTCD first detects the appearance of concept drift and performs prototype updates to mitigate its impact. Afterward, it standardizes the potential space distribution and selectively preserves key training parameters to address CF. This approach reduces the required memory and enhances energy efficiency. To evaluate the performance of the proposed model in real-time health monitoring tasks, we utilize electrocardiogram (ECG) and photoplethysmogram (PPG) data. By adopting various feature extractors, three arrhythmia classification models are compared. To assess the energy efficiency of OTCD, we conduct runtime tests on each dataset. Additionally, the OTCD is compared with state-of-the-art (SOTA) dynamic time series classification models for performance evaluation. The OTCD algorithm outperforms existing SOTA time series classification algorithms in IoMT. In particular, OTCD is on average 2.77% to 14.74% more accurate than other models on the MIT-BIH arrhythmia dataset. Additionally, it consumes low memory (1 KB) and performs computations at a rate of 0.004 GFLOPs per second, leading to energy savings and high time efficiency. Our proposed algorithm, OTCD, enables efficient real-time classification of medical time series on edge health devices. Experimental results demonstrate its significant competitiveness, offering promising prospects for safe and reliable healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小池同学完成签到,获得积分10
刚刚
科研通AI6应助121311采纳,获得10
1秒前
Carolin发布了新的文献求助10
1秒前
谦让涵菡完成签到 ,获得积分10
2秒前
王耀武完成签到,获得积分10
2秒前
朴素念之完成签到,获得积分20
3秒前
3秒前
学术裁缝发布了新的文献求助10
3秒前
连冬萱发布了新的文献求助10
3秒前
ruby完成签到,获得积分10
3秒前
大魔王完成签到 ,获得积分10
4秒前
zhang完成签到,获得积分10
4秒前
YW发布了新的文献求助30
4秒前
xg发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
踏实绮露完成签到 ,获得积分10
8秒前
8秒前
iam小羊人完成签到,获得积分20
9秒前
9秒前
10秒前
失眠无声完成签到,获得积分10
10秒前
Jiang完成签到,获得积分10
11秒前
大模型应助称心的乘云采纳,获得10
11秒前
桐桐应助lw采纳,获得10
12秒前
12秒前
Hello应助连冬萱采纳,获得30
13秒前
13秒前
14秒前
Rain_BJ发布了新的文献求助10
14秒前
Carolin完成签到,获得积分10
15秒前
孙宗帅发布了新的文献求助10
15秒前
15秒前
iam小羊人发布了新的文献求助20
15秒前
16秒前
下雨天睡个懒觉完成签到,获得积分10
17秒前
丘比特应助强壮的美女采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702