清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Energy-efficient dynamic sensor time series classification for edge health devices

计算机科学 人工智能 机器学习 能量(信号处理) 高效能源利用 时间序列 支持向量机 数据挖掘 电气工程 工程类 统计 数学
作者
Y Wang,Le Sun
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:254: 108268-108268
标识
DOI:10.1016/j.cmpb.2024.108268
摘要

Time series data plays a crucial role in the realm of the Internet of Things Medical (IoMT). Through machine learning (ML) algorithms, online time series classification in IoMT systems enables reliable real-time disease detection. Deploying ML algorithms on edge health devices can reduce latency and safeguard patients' privacy. However, the limited computational resources of these devices underscore the need for more energy-efficient algorithms. Furthermore, online time series classification inevitably faces the challenges of concept drift (CD) and catastrophic forgetting (CF). To address these challenges, this study proposes an energy-efficient Online Time series classification algorithm that can solve CF and CD for health devices, called OTCD. OTCD first detects the appearance of concept drift and performs prototype updates to mitigate its impact. Afterward, it standardizes the potential space distribution and selectively preserves key training parameters to address CF. This approach reduces the required memory and enhances energy efficiency. To evaluate the performance of the proposed model in real-time health monitoring tasks, we utilize electrocardiogram (ECG) and photoplethysmogram (PPG) data. By adopting various feature extractors, three arrhythmia classification models are compared. To assess the energy efficiency of OTCD, we conduct runtime tests on each dataset. Additionally, the OTCD is compared with state-of-the-art (SOTA) dynamic time series classification models for performance evaluation. The OTCD algorithm outperforms existing SOTA time series classification algorithms in IoMT. In particular, OTCD is on average 2.77% to 14.74% more accurate than other models on the MIT-BIH arrhythmia dataset. Additionally, it consumes low memory (1 KB) and performs computations at a rate of 0.004 GFLOPs per second, leading to energy savings and high time efficiency. Our proposed algorithm, OTCD, enables efficient real-time classification of medical time series on edge health devices. Experimental results demonstrate its significant competitiveness, offering promising prospects for safe and reliable healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
39秒前
烨枫晨曦完成签到,获得积分10
42秒前
feiying发布了新的文献求助10
42秒前
51秒前
feiying完成签到,获得积分10
1分钟前
紫熊发布了新的文献求助10
1分钟前
2分钟前
Philip发布了新的文献求助10
2分钟前
2分钟前
hani发布了新的文献求助10
2分钟前
hani完成签到,获得积分10
3分钟前
紫熊完成签到,获得积分10
3分钟前
Lucas应助杨明明采纳,获得10
4分钟前
4分钟前
丹晨发布了新的文献求助10
4分钟前
丹晨完成签到,获得积分10
4分钟前
小马甲应助丹晨采纳,获得10
4分钟前
吴端完成签到,获得积分10
4分钟前
Yvonne完成签到,获得积分20
4分钟前
实力不允许完成签到 ,获得积分10
5分钟前
7788完成签到,获得积分10
5分钟前
chloe完成签到,获得积分10
6分钟前
woxinyouyou完成签到,获得积分0
6分钟前
宇文非笑完成签到 ,获得积分10
7分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
8分钟前
12分钟前
14分钟前
Jeriu发布了新的文献求助10
14分钟前
A,w携念e行ོ完成签到,获得积分10
14分钟前
15分钟前
丹晨发布了新的文献求助10
15分钟前
小二郎应助汎影采纳,获得10
17分钟前
17分钟前
Orange应助郜南烟采纳,获得10
17分钟前
汎影发布了新的文献求助10
17分钟前
汎影完成签到,获得积分10
18分钟前
DaSheng完成签到,获得积分10
20分钟前
慕青应助熊猫胖大怂采纳,获得10
22分钟前
tt耶完成签到 ,获得积分10
22分钟前
22分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826669
捐赠科研通 2454573
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527