Energy-efficient dynamic sensor time series classification for edge health devices

计算机科学 人工智能 机器学习 能量(信号处理) 高效能源利用 时间序列 支持向量机 数据挖掘 数学 统计 电气工程 工程类
作者
Y Wang,Le Sun
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:254: 108268-108268
标识
DOI:10.1016/j.cmpb.2024.108268
摘要

Time series data plays a crucial role in the realm of the Internet of Things Medical (IoMT). Through machine learning (ML) algorithms, online time series classification in IoMT systems enables reliable real-time disease detection. Deploying ML algorithms on edge health devices can reduce latency and safeguard patients' privacy. However, the limited computational resources of these devices underscore the need for more energy-efficient algorithms. Furthermore, online time series classification inevitably faces the challenges of concept drift (CD) and catastrophic forgetting (CF). To address these challenges, this study proposes an energy-efficient Online Time series classification algorithm that can solve CF and CD for health devices, called OTCD. OTCD first detects the appearance of concept drift and performs prototype updates to mitigate its impact. Afterward, it standardizes the potential space distribution and selectively preserves key training parameters to address CF. This approach reduces the required memory and enhances energy efficiency. To evaluate the performance of the proposed model in real-time health monitoring tasks, we utilize electrocardiogram (ECG) and photoplethysmogram (PPG) data. By adopting various feature extractors, three arrhythmia classification models are compared. To assess the energy efficiency of OTCD, we conduct runtime tests on each dataset. Additionally, the OTCD is compared with state-of-the-art (SOTA) dynamic time series classification models for performance evaluation. The OTCD algorithm outperforms existing SOTA time series classification algorithms in IoMT. In particular, OTCD is on average 2.77% to 14.74% more accurate than other models on the MIT-BIH arrhythmia dataset. Additionally, it consumes low memory (1 KB) and performs computations at a rate of 0.004 GFLOPs per second, leading to energy savings and high time efficiency. Our proposed algorithm, OTCD, enables efficient real-time classification of medical time series on edge health devices. Experimental results demonstrate its significant competitiveness, offering promising prospects for safe and reliable healthcare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助怕黑捕采纳,获得10
刚刚
刘飞发布了新的文献求助10
1秒前
慕青应助yinghan采纳,获得10
2秒前
张小松发布了新的文献求助10
2秒前
高高的蓝天完成签到,获得积分10
2秒前
渡111发布了新的文献求助10
2秒前
3秒前
陶醉晓凡完成签到,获得积分10
3秒前
zhao完成签到,获得积分10
3秒前
呜呜呜发布了新的文献求助10
3秒前
diu完成签到,获得积分10
3秒前
浅渊发布了新的文献求助10
3秒前
3秒前
飘逸书易完成签到,获得积分20
4秒前
4秒前
我的小宇宙呢完成签到,获得积分10
4秒前
靳韩羽完成签到,获得积分10
4秒前
allezallez完成签到,获得积分10
5秒前
Sean发布了新的文献求助10
5秒前
田様应助王泽坤采纳,获得10
5秒前
自觉棒棒糖完成签到 ,获得积分20
6秒前
6秒前
斑斑发布了新的文献求助10
6秒前
Jyouang发布了新的文献求助10
6秒前
7秒前
美丽凡阳发布了新的文献求助10
7秒前
科研通AI6应助禹映安采纳,获得10
8秒前
8秒前
durian发布了新的文献求助10
8秒前
8秒前
胡姐姐发布了新的文献求助20
8秒前
踏实的大地完成签到,获得积分10
8秒前
9秒前
9秒前
tum发布了新的文献求助10
9秒前
seasky完成签到,获得积分10
9秒前
After完成签到,获得积分10
10秒前
Owen应助李小伟采纳,获得10
11秒前
隐形曼青应助清秀凌蝶采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619177
求助须知:如何正确求助?哪些是违规求助? 4703952
关于积分的说明 14925213
捐赠科研通 4759305
什么是DOI,文献DOI怎么找? 2550439
邀请新用户注册赠送积分活动 1513156
关于科研通互助平台的介绍 1474401