An AttnGAN-based Macro Image Synthesis Model for Predicting the Internal Structure of Billets

计算机科学 人工神经网络 人工智能 连铸 像素 样品(材料) 一致性(知识库) 模式识别(心理学) 算法 计算机视觉 色谱法 复合材料 化学 材料科学 程序设计语言
作者
Hongji Meng,Yue Wang,Wenbin An,Jian Yang,Qing He
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13
标识
DOI:10.1109/tim.2024.3403209
摘要

The internal structure of casting billets directly affects the performance of steel products, but in practice, it can not be detected online. Macro images (low-magnification snapshots of the casting billet sample cross-sections) can visualize the structure, but obtaining them is lagging and costly. Numerical simulation methods are time-consuming to calculate, and only corrected for a few steel grades, making accuracy difficult to guarantee under other working conditions. Thus, we propose a model based on generative adversarial networks (GANs) to quickly predict the internal structure of billets, which can synthesize macro images from production parameters. However, the macro images are less visually varied and have small and dense features. Conventional GANs struggle to generate macro images of casting billets. Therefore, this model is based on the attentional GAN (AttnGAN) to learn different level features through the supervision of multi-resolution images. The generators apply three-branch residual blocks to predict new pixels by multi-scale information, which improves the realism of details. Additionally, considering the ordering property of continuous casting, a series model of the deep neural network and recurrent neural network is designed to encode input parameters. It is combined with image information pretraining to simplify the learning of the mapping relationship in the macro image synthesis model. After comparison with other text-to-image generation models, our model performs better in terms of evaluation metrics and visual effects. The prediction results are verified using two samples from SCM435-M steel. The obtained results have a high consistency with the real data, with the absolute error of the equiaxed crystal rate being 0.84% and 0.6%, respectively. Moreover, the inference speed of our model is fast, which is of reference value for the optimization of the continuous casting process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyu完成签到,获得积分10
1秒前
1秒前
赘婿应助初a采纳,获得10
1秒前
Joseph_Kerr完成签到 ,获得积分20
2秒前
2秒前
哈哈哈哈应助高挑的绝山采纳,获得10
2秒前
2秒前
李飞完成签到,获得积分10
2秒前
正直完成签到 ,获得积分10
3秒前
4秒前
大个应助lcs采纳,获得10
4秒前
英俊的铭应助哈士奇采纳,获得10
4秒前
wwwying完成签到,获得积分20
5秒前
5秒前
摩登兄弟发布了新的文献求助10
5秒前
5秒前
传奇3应助wilaken采纳,获得10
6秒前
6秒前
6秒前
傲娇黄豆发布了新的文献求助30
7秒前
执着的忆雪完成签到,获得积分10
8秒前
8秒前
007完成签到,获得积分10
8秒前
Ivychao发布了新的文献求助10
9秒前
念念完成签到,获得积分10
10秒前
纯真盛男发布了新的文献求助30
10秒前
兔毛毛完成签到,获得积分10
10秒前
火火吴发布了新的文献求助10
11秒前
李青梅完成签到,获得积分10
11秒前
11秒前
龚成明发布了新的文献求助10
12秒前
12秒前
zhikaiyici完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
阿喵完成签到,获得积分0
15秒前
15秒前
wangwangdui完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563884
求助须知:如何正确求助?哪些是违规求助? 3137084
关于积分的说明 9421008
捐赠科研通 2837557
什么是DOI,文献DOI怎么找? 1559894
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717195