Carbon Emission Scenario Simulation and Policy Regulation in Resource-based Provinces Based on System Dynamics Modeling

系统动力学 碳纤维 资源(消歧) 环境经济学 动力学(音乐) 环境科学 环境资源管理 计算机科学 自然资源经济学 经济 物理 计算机网络 算法 人工智能 复合数 声学
作者
Lu Wang,Zhe Li,Zhanjun Xu,Yue Xin,Liqi Yang,Rongjin Wang,Yali Chen,Heqiu Ma
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:460: 142619-142619 被引量:3
标识
DOI:10.1016/j.jclepro.2024.142619
摘要

In China, numerous cities are resource-based, with substantial energy consumption, emissions, and pollution and they expand quickly and economically, notably enhancing their carbon emissions. Nevertheless, they have considerable potential for emission reduction. Assuming the "dual-carbon" goal as a backdrop, this study considered Shanxi Province, the largest coal resource-based province in China, for a case in point. It established a carbon emission system dynamics model, constructs five carbon emission systems, namely, economy, energy, population, land, and environment, and sets up four scenarios. Finally, in light of the scenario simulation's outcomes, we explored the optimal path and policy regulations for resource-based cities to reach carbon peaks. The study conclusions show the following: (1) All factors are exhibit correlated with each other, and their influence in the four scenarios is ranked as follows: GDP, energy consumption, industrial structure, total population, land-use structure. (2) Although GDP is a key factor influencing total carbon emissions, regulating only a single factor cannot achieve the carbon emission target. Thus, all factors need to be considered and synergistically regulated to achieve optimal carbon benefits. (3) Carbon emissions are higher and grow faster in the Baseline Development Scenario and the Fast Development Scenario, particularly in the FDS scenario, where they reach 614.48 million tons. Both scenarios exceed the peak carbon target by 4.4% and 7.1%. (4) In the Low-Carbon Optimization model and Resource Saving Scenario have low and slow-growing carbon emissions. Although the RSS has lower carbon emissions of 539.83 million tons, sacrificing sustainable development to reduce these emissions is unrealistic. In comparison, the LOS scenario represents the optimal path for achieving sustainable growth and lowering carbon emissions in Shanxi Province, with emissions totaling 550.99 million tons. This study implements strategies to manage the pace of population expansion, optimize the industrial structure, modify the energy structure, and optimize the allocation of land resources. The results of the study not only do our findings offer data reinforcement and implementation strategies for the low-carbon conversion of similar resource-based cities in China, but also offer case studies for different kinds of resource-based cities that fulfill the "carbon peak" objective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123发布了新的文献求助10
2秒前
程程发布了新的文献求助10
2秒前
李健的小迷弟应助江峰采纳,获得10
2秒前
焦黑面包发布了新的文献求助10
3秒前
伊琳发布了新的文献求助10
3秒前
liuxingyu发布了新的文献求助10
5秒前
牛腩沉沉完成签到 ,获得积分10
6秒前
文艺的荠完成签到,获得积分20
7秒前
123完成签到,获得积分10
7秒前
8秒前
叮当完成签到,获得积分10
8秒前
9秒前
SPQR发布了新的文献求助10
9秒前
兔子不吃胡萝卜完成签到 ,获得积分10
10秒前
galaxy完成签到 ,获得积分10
11秒前
852应助云宝采纳,获得10
12秒前
调研昵称发布了新的文献求助30
12秒前
12秒前
14秒前
小雨点应助科研通管家采纳,获得30
15秒前
李健应助科研通管家采纳,获得10
15秒前
cc应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
程程完成签到,获得积分20
15秒前
爆米花应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
爆爆应助科研通管家采纳,获得10
16秒前
毛豆应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
16秒前
焦黑面包完成签到,获得积分10
17秒前
yar应助我爱读文献采纳,获得10
18秒前
星星的梦发布了新的文献求助10
18秒前
19秒前
苗条白枫完成签到,获得积分10
20秒前
21秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465336
求助须知:如何正确求助?哪些是违规求助? 3058502
关于积分的说明 9061839
捐赠科研通 2748797
什么是DOI,文献DOI怎么找? 1508157
科研通“疑难数据库(出版商)”最低求助积分说明 696806
邀请新用户注册赠送积分活动 696476