清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spiking ViT: spiking neural networks with transformer—attention for steel surface defect classification

尖峰神经网络 人工神经网络 计算机科学 人工智能 模式识别(心理学) 分类 编码器 变压器 电压 工程类 电气工程 操作系统
作者
Liang Gong,Hang Dong,Xinyu Zhang,Xin Cheng,Fan Ye,Liangchao Guo,Zhenghui Ge
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (03) 被引量:5
标识
DOI:10.1117/1.jei.33.3.033001
摘要

Throughout the steel production process, a variety of surface defects inevitably occur. These defects can impair the quality of steel products and reduce manufacturing efficiency. Therefore, it is crucial to study and categorize the multiple defects on the surface of steel strips. Vision transformer (ViT) is a unique neural network model based on a self-attention mechanism that is widely used in many different disciplines. Conventional ViT ignores the specifics of brain signaling and instead uses activation functions to simulate genuine neurons. One of the fundamental building blocks of a spiking neural network is leaky integration and fire (LIF), which has biodynamic characteristics akin to those of a genuine neuron. LIF neurons work in an event-driven manner such that higher performance can be achieved with less power. The goal of this work is to integrate ViT and LIF neurons to build and train an end-to-end hybrid network architecture, spiking vision transformer (S-ViT), for the classification of steel surface defects. The framework relies on the ViT architecture by replacing the activation functions used in ViT with LIF neurons, constructing a global spike feature fusion module spiking transformer encoder as well as a spiking-MLP classification head for implementing the classification functionality and using it as a basic building block of S-ViT. Based on the experimental results, our method has demonstrated outstanding classification performance across all metrics. The overall test accuracies of S-ViT are 99.41%, 99.65%, 99.54%, and 99.77% on NEU-CLSs, and 95.70%, 95.93%, 96.94%, and 97.19% on XSDD. S-ViT achieves superior classification performance compared to convolutional neural networks and recent findings. Its performance is also improved relative to the original ViT model. Furthermore, the robustness test results of S-ViT show that S-ViT still maintains reliable accuracy when recognizing images that contain Gaussian noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白华苍松发布了新的文献求助20
12秒前
笨笨完成签到 ,获得积分10
14秒前
Carl完成签到 ,获得积分10
22秒前
在水一方应助白华苍松采纳,获得10
22秒前
月月鸟完成签到 ,获得积分10
25秒前
赵英哲发布了新的文献求助10
26秒前
夜雨完成签到 ,获得积分10
26秒前
33秒前
小公牛完成签到 ,获得积分10
35秒前
姚芭蕉完成签到 ,获得积分0
35秒前
叁月二完成签到 ,获得积分10
36秒前
情怀应助赵英哲采纳,获得10
36秒前
37秒前
李木禾完成签到 ,获得积分10
44秒前
成就的沛菡完成签到 ,获得积分10
50秒前
可靠映秋应助科研通管家采纳,获得30
57秒前
BowieHuang应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
殷勤的紫槐完成签到,获得积分0
59秒前
迅速的幻雪完成签到 ,获得积分10
1分钟前
崔京成完成签到 ,获得积分10
1分钟前
charih完成签到 ,获得积分10
1分钟前
鱼羊明完成签到 ,获得积分10
1分钟前
科研通AI2S应助lulululululu采纳,获得10
1分钟前
合不着完成签到 ,获得积分10
1分钟前
英俊的铭应助ira采纳,获得10
1分钟前
sci完成签到 ,获得积分10
1分钟前
1分钟前
科研小花狗完成签到 ,获得积分10
1分钟前
1分钟前
小g完成签到,获得积分10
1分钟前
lod完成签到,获得积分10
2分钟前
theo完成签到 ,获得积分10
2分钟前
111完成签到 ,获得积分10
2分钟前
小红书求接接接接一篇完成签到,获得积分10
2分钟前
孙哈哈完成签到 ,获得积分10
2分钟前
凌泉完成签到 ,获得积分10
2分钟前
小狮子完成签到 ,获得积分10
2分钟前
2分钟前
jing发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590652
求助须知:如何正确求助?哪些是违规求助? 4676605
关于积分的说明 14795452
捐赠科研通 4634379
什么是DOI,文献DOI怎么找? 2532871
邀请新用户注册赠送积分活动 1501349
关于科研通互助平台的介绍 1468741