Spiking ViT: spiking neural networks with transformer—attention for steel surface defect classification

尖峰神经网络 人工神经网络 计算机科学 人工智能 模式识别(心理学) 分类 编码器 变压器 电压 工程类 电气工程 操作系统
作者
Liang Gong,Hang Dong,Xinyu Zhang,Xin Cheng,Fan Ye,Liangchao Guo,Zhenghui Ge
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (03) 被引量:5
标识
DOI:10.1117/1.jei.33.3.033001
摘要

Throughout the steel production process, a variety of surface defects inevitably occur. These defects can impair the quality of steel products and reduce manufacturing efficiency. Therefore, it is crucial to study and categorize the multiple defects on the surface of steel strips. Vision transformer (ViT) is a unique neural network model based on a self-attention mechanism that is widely used in many different disciplines. Conventional ViT ignores the specifics of brain signaling and instead uses activation functions to simulate genuine neurons. One of the fundamental building blocks of a spiking neural network is leaky integration and fire (LIF), which has biodynamic characteristics akin to those of a genuine neuron. LIF neurons work in an event-driven manner such that higher performance can be achieved with less power. The goal of this work is to integrate ViT and LIF neurons to build and train an end-to-end hybrid network architecture, spiking vision transformer (S-ViT), for the classification of steel surface defects. The framework relies on the ViT architecture by replacing the activation functions used in ViT with LIF neurons, constructing a global spike feature fusion module spiking transformer encoder as well as a spiking-MLP classification head for implementing the classification functionality and using it as a basic building block of S-ViT. Based on the experimental results, our method has demonstrated outstanding classification performance across all metrics. The overall test accuracies of S-ViT are 99.41%, 99.65%, 99.54%, and 99.77% on NEU-CLSs, and 95.70%, 95.93%, 96.94%, and 97.19% on XSDD. S-ViT achieves superior classification performance compared to convolutional neural networks and recent findings. Its performance is also improved relative to the original ViT model. Furthermore, the robustness test results of S-ViT show that S-ViT still maintains reliable accuracy when recognizing images that contain Gaussian noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助快乐小瑶采纳,获得10
刚刚
刚刚
迅速路人发布了新的文献求助10
1秒前
scxl2000完成签到 ,获得积分10
1秒前
HYLynn完成签到,获得积分10
1秒前
YEEQQ完成签到 ,获得积分10
1秒前
2秒前
2秒前
psy1979cn发布了新的文献求助50
2秒前
SciGPT应助心流采纳,获得30
3秒前
yfe关闭了yfe文献求助
3秒前
3秒前
有点意思发布了新的文献求助10
3秒前
3秒前
科研迪发布了新的文献求助10
4秒前
临澈完成签到,获得积分10
4秒前
crystal完成签到,获得积分20
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
hjabao完成签到,获得积分10
6秒前
小老头儿完成签到,获得积分10
6秒前
水果小王子完成签到 ,获得积分10
6秒前
7秒前
苯酮酸钠完成签到,获得积分10
7秒前
yct91092完成签到,获得积分10
7秒前
文静的麦片完成签到,获得积分10
7秒前
7秒前
CartGo发布了新的文献求助10
8秒前
zzz2193发布了新的文献求助10
8秒前
YY完成签到,获得积分10
8秒前
8秒前
圈圈完成签到 ,获得积分10
8秒前
小杨发布了新的文献求助10
8秒前
金j完成签到,获得积分10
8秒前
meng发布了新的文献求助10
8秒前
风中吐司完成签到,获得积分20
8秒前
善学以致用应助超帅凡阳采纳,获得10
8秒前
香蕉觅云应助阿杰采纳,获得10
9秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444