Spiking ViT: spiking neural networks with transformer—attention for steel surface defect classification

尖峰神经网络 人工神经网络 计算机科学 人工智能 模式识别(心理学) 分类 编码器 变压器 电压 工程类 电气工程 操作系统
作者
Liang Gong,Hang Dong,Xinyu Zhang,Xin Cheng,Fan Ye,Liangchao Guo,Zhenghui Ge
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (03) 被引量:1
标识
DOI:10.1117/1.jei.33.3.033001
摘要

Throughout the steel production process, a variety of surface defects inevitably occur. These defects can impair the quality of steel products and reduce manufacturing efficiency. Therefore, it is crucial to study and categorize the multiple defects on the surface of steel strips. Vision transformer (ViT) is a unique neural network model based on a self-attention mechanism that is widely used in many different disciplines. Conventional ViT ignores the specifics of brain signaling and instead uses activation functions to simulate genuine neurons. One of the fundamental building blocks of a spiking neural network is leaky integration and fire (LIF), which has biodynamic characteristics akin to those of a genuine neuron. LIF neurons work in an event-driven manner such that higher performance can be achieved with less power. The goal of this work is to integrate ViT and LIF neurons to build and train an end-to-end hybrid network architecture, spiking vision transformer (S-ViT), for the classification of steel surface defects. The framework relies on the ViT architecture by replacing the activation functions used in ViT with LIF neurons, constructing a global spike feature fusion module spiking transformer encoder as well as a spiking-MLP classification head for implementing the classification functionality and using it as a basic building block of S-ViT. Based on the experimental results, our method has demonstrated outstanding classification performance across all metrics. The overall test accuracies of S-ViT are 99.41%, 99.65%, 99.54%, and 99.77% on NEU-CLSs, and 95.70%, 95.93%, 96.94%, and 97.19% on XSDD. S-ViT achieves superior classification performance compared to convolutional neural networks and recent findings. Its performance is also improved relative to the original ViT model. Furthermore, the robustness test results of S-ViT show that S-ViT still maintains reliable accuracy when recognizing images that contain Gaussian noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助小刘采纳,获得10
1秒前
cassie完成签到,获得积分10
1秒前
2秒前
2秒前
传奇3应助危机的安容采纳,获得10
2秒前
wnx发布了新的文献求助10
3秒前
4秒前
李健应助1235采纳,获得10
6秒前
啊啊啊啊发布了新的文献求助10
6秒前
NexusExplorer应助ladymomo采纳,获得10
7秒前
合适依秋发布了新的文献求助10
7秒前
10秒前
11秒前
斯文败类应助ggg采纳,获得10
11秒前
12秒前
dddyrrrrr完成签到 ,获得积分10
12秒前
12秒前
科研通AI5应助wnx采纳,获得10
12秒前
酷炫的从雪完成签到,获得积分20
12秒前
14秒前
14秒前
15秒前
辛勤觅儿完成签到,获得积分10
15秒前
合适依秋完成签到,获得积分10
15秒前
JamesPei应助魔幻的雪碧采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
17秒前
李健应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143116
求助须知:如何正确求助?哪些是违规求助? 4341139
关于积分的说明 13519750
捐赠科研通 4181415
什么是DOI,文献DOI怎么找? 2292915
邀请新用户注册赠送积分活动 1293554
关于科研通互助平台的介绍 1236153