Spiking ViT: spiking neural networks with transformer—attention for steel surface defect classification

尖峰神经网络 人工神经网络 计算机科学 人工智能 模式识别(心理学) 分类 编码器 变压器 电压 工程类 电气工程 操作系统
作者
Liang Gong,Hang Dong,Xinyu Zhang,Xin Cheng,Fan Ye,Liangchao Guo,Zhenghui Ge
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (03) 被引量:1
标识
DOI:10.1117/1.jei.33.3.033001
摘要

Throughout the steel production process, a variety of surface defects inevitably occur. These defects can impair the quality of steel products and reduce manufacturing efficiency. Therefore, it is crucial to study and categorize the multiple defects on the surface of steel strips. Vision transformer (ViT) is a unique neural network model based on a self-attention mechanism that is widely used in many different disciplines. Conventional ViT ignores the specifics of brain signaling and instead uses activation functions to simulate genuine neurons. One of the fundamental building blocks of a spiking neural network is leaky integration and fire (LIF), which has biodynamic characteristics akin to those of a genuine neuron. LIF neurons work in an event-driven manner such that higher performance can be achieved with less power. The goal of this work is to integrate ViT and LIF neurons to build and train an end-to-end hybrid network architecture, spiking vision transformer (S-ViT), for the classification of steel surface defects. The framework relies on the ViT architecture by replacing the activation functions used in ViT with LIF neurons, constructing a global spike feature fusion module spiking transformer encoder as well as a spiking-MLP classification head for implementing the classification functionality and using it as a basic building block of S-ViT. Based on the experimental results, our method has demonstrated outstanding classification performance across all metrics. The overall test accuracies of S-ViT are 99.41%, 99.65%, 99.54%, and 99.77% on NEU-CLSs, and 95.70%, 95.93%, 96.94%, and 97.19% on XSDD. S-ViT achieves superior classification performance compared to convolutional neural networks and recent findings. Its performance is also improved relative to the original ViT model. Furthermore, the robustness test results of S-ViT show that S-ViT still maintains reliable accuracy when recognizing images that contain Gaussian noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
axhh发布了新的文献求助10
1秒前
笨笨的愫应助番茄大王采纳,获得10
2秒前
2秒前
皮蛋solo粥发布了新的文献求助10
2秒前
2秒前
kong完成签到,获得积分10
2秒前
3秒前
盛景洲发布了新的文献求助10
3秒前
十令完成签到,获得积分10
3秒前
3秒前
orixero应助一心搞科研采纳,获得10
4秒前
称心道消发布了新的文献求助10
5秒前
5秒前
慕青应助瘦瘦慕凝采纳,获得10
6秒前
6秒前
moneymonoo完成签到,获得积分10
6秒前
6秒前
勤恳的雨文完成签到,获得积分10
6秒前
7秒前
聪慧小霜应助sharronjxx采纳,获得10
7秒前
勤奋青寒发布了新的文献求助10
8秒前
赘婿应助海盐采纳,获得30
8秒前
9秒前
可爱的函函应助Tiffany采纳,获得10
9秒前
诸葛朝雪完成签到,获得积分10
9秒前
10秒前
san行发布了新的文献求助10
10秒前
moneymonoo发布了新的文献求助10
11秒前
11秒前
阿翔完成签到,获得积分10
11秒前
闪闪寒云完成签到 ,获得积分10
11秒前
11秒前
JYY发布了新的文献求助10
11秒前
寒战发布了新的文献求助10
12秒前
tzj发布了新的文献求助10
12秒前
一心搞科研完成签到,获得积分10
13秒前
等风来关注了科研通微信公众号
13秒前
13秒前
搜集达人应助坦率的含海采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585651
求助须知:如何正确求助?哪些是违规求助? 4002263
关于积分的说明 12389980
捐赠科研通 3678396
什么是DOI,文献DOI怎么找? 2027345
邀请新用户注册赠送积分活动 1060821
科研通“疑难数据库(出版商)”最低求助积分说明 947307