Spiking ViT: spiking neural networks with transformer—attention for steel surface defect classification

尖峰神经网络 人工神经网络 计算机科学 人工智能 模式识别(心理学) 分类 编码器 变压器 电压 工程类 电气工程 操作系统
作者
Liang Gong,Hang Dong,Xinyu Zhang,Xin Cheng,Fan Ye,Liangchao Guo,Zhenghui Ge
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (03) 被引量:5
标识
DOI:10.1117/1.jei.33.3.033001
摘要

Throughout the steel production process, a variety of surface defects inevitably occur. These defects can impair the quality of steel products and reduce manufacturing efficiency. Therefore, it is crucial to study and categorize the multiple defects on the surface of steel strips. Vision transformer (ViT) is a unique neural network model based on a self-attention mechanism that is widely used in many different disciplines. Conventional ViT ignores the specifics of brain signaling and instead uses activation functions to simulate genuine neurons. One of the fundamental building blocks of a spiking neural network is leaky integration and fire (LIF), which has biodynamic characteristics akin to those of a genuine neuron. LIF neurons work in an event-driven manner such that higher performance can be achieved with less power. The goal of this work is to integrate ViT and LIF neurons to build and train an end-to-end hybrid network architecture, spiking vision transformer (S-ViT), for the classification of steel surface defects. The framework relies on the ViT architecture by replacing the activation functions used in ViT with LIF neurons, constructing a global spike feature fusion module spiking transformer encoder as well as a spiking-MLP classification head for implementing the classification functionality and using it as a basic building block of S-ViT. Based on the experimental results, our method has demonstrated outstanding classification performance across all metrics. The overall test accuracies of S-ViT are 99.41%, 99.65%, 99.54%, and 99.77% on NEU-CLSs, and 95.70%, 95.93%, 96.94%, and 97.19% on XSDD. S-ViT achieves superior classification performance compared to convolutional neural networks and recent findings. Its performance is also improved relative to the original ViT model. Furthermore, the robustness test results of S-ViT show that S-ViT still maintains reliable accuracy when recognizing images that contain Gaussian noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gege发布了新的文献求助10
刚刚
刚刚
JamesPei应助123采纳,获得10
刚刚
1秒前
1秒前
火星上醉山完成签到 ,获得积分10
1秒前
李爱国应助李玉琼采纳,获得10
1秒前
1秒前
小李发布了新的文献求助10
2秒前
香菜完成签到,获得积分10
2秒前
飘逸惠完成签到,获得积分10
2秒前
Double_N完成签到,获得积分10
2秒前
2秒前
球球完成签到,获得积分10
2秒前
78888完成签到 ,获得积分10
3秒前
Ava应助木木采纳,获得10
3秒前
司马秋凌完成签到,获得积分10
3秒前
府于杰完成签到,获得积分10
3秒前
三清小爷完成签到,获得积分10
4秒前
4秒前
支妙完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
江边鸟完成签到 ,获得积分10
4秒前
ICE发布了新的文献求助10
5秒前
慕海象龟发布了新的文献求助10
5秒前
5秒前
秦时明月发布了新的文献求助10
5秒前
5秒前
奋斗夏真发布了新的文献求助20
5秒前
5秒前
科研完成签到,获得积分10
6秒前
bless完成签到,获得积分10
6秒前
你吃饱了吗完成签到,获得积分10
6秒前
彭于晏应助tleeny采纳,获得10
6秒前
6秒前
iwonder发布了新的文献求助10
6秒前
7秒前
DCC关闭了DCC文献求助
7秒前
郭倩发布了新的文献求助10
7秒前
牵着老虎晒月亮完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659101
求助须知:如何正确求助?哪些是违规求助? 4825945
关于积分的说明 15085232
捐赠科研通 4817760
什么是DOI,文献DOI怎么找? 2578352
邀请新用户注册赠送积分活动 1532998
关于科研通互助平台的介绍 1491722