亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spiking ViT: spiking neural networks with transformer—attention for steel surface defect classification

尖峰神经网络 人工神经网络 计算机科学 人工智能 模式识别(心理学) 分类 编码器 变压器 电压 工程类 电气工程 操作系统
作者
Liang Gong,Hang Dong,Xinyu Zhang,Xin Cheng,Fan Ye,Liangchao Guo,Zhenghui Ge
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (03) 被引量:1
标识
DOI:10.1117/1.jei.33.3.033001
摘要

Throughout the steel production process, a variety of surface defects inevitably occur. These defects can impair the quality of steel products and reduce manufacturing efficiency. Therefore, it is crucial to study and categorize the multiple defects on the surface of steel strips. Vision transformer (ViT) is a unique neural network model based on a self-attention mechanism that is widely used in many different disciplines. Conventional ViT ignores the specifics of brain signaling and instead uses activation functions to simulate genuine neurons. One of the fundamental building blocks of a spiking neural network is leaky integration and fire (LIF), which has biodynamic characteristics akin to those of a genuine neuron. LIF neurons work in an event-driven manner such that higher performance can be achieved with less power. The goal of this work is to integrate ViT and LIF neurons to build and train an end-to-end hybrid network architecture, spiking vision transformer (S-ViT), for the classification of steel surface defects. The framework relies on the ViT architecture by replacing the activation functions used in ViT with LIF neurons, constructing a global spike feature fusion module spiking transformer encoder as well as a spiking-MLP classification head for implementing the classification functionality and using it as a basic building block of S-ViT. Based on the experimental results, our method has demonstrated outstanding classification performance across all metrics. The overall test accuracies of S-ViT are 99.41%, 99.65%, 99.54%, and 99.77% on NEU-CLSs, and 95.70%, 95.93%, 96.94%, and 97.19% on XSDD. S-ViT achieves superior classification performance compared to convolutional neural networks and recent findings. Its performance is also improved relative to the original ViT model. Furthermore, the robustness test results of S-ViT show that S-ViT still maintains reliable accuracy when recognizing images that contain Gaussian noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽乐菱应助科研通管家采纳,获得30
1秒前
4秒前
16秒前
22秒前
Rondab应助firesquall采纳,获得10
23秒前
25秒前
41秒前
量子星尘发布了新的文献求助10
42秒前
CMY发布了新的文献求助10
47秒前
杨涵完成签到 ,获得积分10
52秒前
1分钟前
RAIN发布了新的文献求助10
1分钟前
1分钟前
海绵宝宝抓水母完成签到,获得积分10
1分钟前
平淡的快乐完成签到,获得积分10
1分钟前
JamesPei应助平淡的快乐采纳,获得10
1分钟前
在水一方应助CMY采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
冬去春来完成签到 ,获得积分10
2分钟前
2分钟前
CMY发布了新的文献求助10
2分钟前
姜忆霜完成签到 ,获得积分10
2分钟前
小蘑菇应助葛力采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
葛力发布了新的文献求助10
3分钟前
彩色的紫丝完成签到 ,获得积分10
3分钟前
fangyifang完成签到,获得积分10
3分钟前
xxx完成签到,获得积分20
3分钟前
3分钟前
3分钟前
xxx发布了新的文献求助20
3分钟前
Tethys完成签到 ,获得积分10
3分钟前
3分钟前
Akim应助大方研究生采纳,获得10
3分钟前
3分钟前
孙雁哝发布了新的文献求助10
3分钟前
yx_cheng应助科研通管家采纳,获得10
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
Orange应助qyn1234566采纳,获得10
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008109
求助须知:如何正确求助?哪些是违规求助? 3547893
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188