Spiking ViT: spiking neural networks with transformer—attention for steel surface defect classification

尖峰神经网络 人工神经网络 计算机科学 人工智能 模式识别(心理学) 分类 编码器 变压器 电压 工程类 电气工程 操作系统
作者
Liang Gong,Hang Dong,Xinyu Zhang,Xin Cheng,Fan Ye,Liangchao Guo,Zhenghui Ge
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (03) 被引量:1
标识
DOI:10.1117/1.jei.33.3.033001
摘要

Throughout the steel production process, a variety of surface defects inevitably occur. These defects can impair the quality of steel products and reduce manufacturing efficiency. Therefore, it is crucial to study and categorize the multiple defects on the surface of steel strips. Vision transformer (ViT) is a unique neural network model based on a self-attention mechanism that is widely used in many different disciplines. Conventional ViT ignores the specifics of brain signaling and instead uses activation functions to simulate genuine neurons. One of the fundamental building blocks of a spiking neural network is leaky integration and fire (LIF), which has biodynamic characteristics akin to those of a genuine neuron. LIF neurons work in an event-driven manner such that higher performance can be achieved with less power. The goal of this work is to integrate ViT and LIF neurons to build and train an end-to-end hybrid network architecture, spiking vision transformer (S-ViT), for the classification of steel surface defects. The framework relies on the ViT architecture by replacing the activation functions used in ViT with LIF neurons, constructing a global spike feature fusion module spiking transformer encoder as well as a spiking-MLP classification head for implementing the classification functionality and using it as a basic building block of S-ViT. Based on the experimental results, our method has demonstrated outstanding classification performance across all metrics. The overall test accuracies of S-ViT are 99.41%, 99.65%, 99.54%, and 99.77% on NEU-CLSs, and 95.70%, 95.93%, 96.94%, and 97.19% on XSDD. S-ViT achieves superior classification performance compared to convolutional neural networks and recent findings. Its performance is also improved relative to the original ViT model. Furthermore, the robustness test results of S-ViT show that S-ViT still maintains reliable accuracy when recognizing images that contain Gaussian noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助无心的傲易采纳,获得10
1秒前
六碗鱼完成签到 ,获得积分10
2秒前
3秒前
zxz完成签到,获得积分10
4秒前
tz发布了新的文献求助10
6秒前
Heima完成签到,获得积分20
6秒前
Sandy发布了新的文献求助10
7秒前
forgodssake发布了新的文献求助10
7秒前
Dsunflower完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
清爽的绫完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
科研通AI2S应助forgodssake采纳,获得10
12秒前
maox1aoxin应助羽雨采纳,获得10
12秒前
小月986发布了新的文献求助10
13秒前
颜千琴发布了新的文献求助10
13秒前
开朗绿蓉发布了新的文献求助10
13秒前
猛犸颠勺发布了新的文献求助10
13秒前
17秒前
科研通AI2S应助守鹤采纳,获得10
17秒前
充电宝应助江南之南采纳,获得10
17秒前
18秒前
颜千琴完成签到,获得积分20
20秒前
Rosin发布了新的文献求助10
21秒前
温柔的鸵鸟完成签到 ,获得积分10
21秒前
开朗绿蓉完成签到,获得积分10
22秒前
forgodssake完成签到,获得积分10
23秒前
研友_LOoomL发布了新的文献求助10
23秒前
23秒前
天天快乐应助科研通管家采纳,获得10
29秒前
ding应助科研通管家采纳,获得10
29秒前
29秒前
科目三应助科研通管家采纳,获得10
29秒前
不配.应助科研通管家采纳,获得10
29秒前
bkagyin应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得30
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238441
求助须知:如何正确求助?哪些是违规求助? 2883823
关于积分的说明 8231778
捐赠科研通 2551777
什么是DOI,文献DOI怎么找? 1380294
科研通“疑难数据库(出版商)”最低求助积分说明 649001
邀请新用户注册赠送积分活动 624631