超细纤维
催化作用
材料科学
热的
纳米技术
吸附
化学工程
纳米尺度
化学
复合材料
有机化学
物理
工程类
气象学
作者
Yunyun Huang,Caini Mou,Jiaxuan Liang,Jiaxin Wan,Pengwei Chen,Bai‐Ou Guan
标识
DOI:10.1002/advs.202310264
摘要
Operando decoding of the key parameters of photo-electric catalysis provides reliable information for catalytic effect evaluation and catalytic mechanism exploration. However, to capture the details of surface-localized and rapid chemical and thermal events at the nanoscale in real-time is highly challenging. A promising approach based on a lab-around-microfiber sensor capable of simulating photo-electric catalytic reactions on the surface of optical fibers as well as monitoring reactant concentration changes and catalytic heat generation processes is demonstrated. Due to the penetration depth of submicron size and the fast response ability of the evanescent field, the lab-around-microfiber sensor overcame the difficulty of reading instantaneous surface parameters in the submicron range. This sensor operando dismantled the changes in reactant concentration and temperature on the catalyst surface induced by light and voltage, respectively. It also decoded the impact of catalyst composition on the adsorption efficiency and catalytic efficiency across various wavelengths and determined the synchronized occurrence of pollutant degradation and catalytic thermal effects. Stable correlations between the real-time parameters and catalytic activities are obtained, helping to provide a basic understanding of the catalytic process and mechanism. This approach fills an important gap in the current monitoring methods of catalytic processes and heat production.
科研通智能强力驱动
Strongly Powered by AbleSci AI