Magnetic resonance imaging‐based radiomics analysis for prediction of treatment response to neoadjuvant chemoradiotherapy and clinical outcome in patients with locally advanced rectal cancer: A large multicentric and validated study

无线电技术 医学 磁共振成像 放化疗 结直肠癌 放射科 临床试验 肿瘤科 内科学 癌症 放射治疗
作者
Tingdan Hu,Jing Gong,Yiqun Sun,Menglei Li,ChongPeng Cai,Xinxiang Li,Yanfen Cui,Xiaoyan Zhang,Tong Tong
出处
期刊:MedComm [Wiley]
卷期号:5 (7) 被引量:5
标识
DOI:10.1002/mco2.609
摘要

Our study investigated whether magnetic resonance imaging (MRI)-based radiomics features could predict good response (GR) to neoadjuvant chemoradiotherapy (nCRT) and clinical outcome in patients with locally advanced rectal cancer (LARC). Radiomics features were extracted from the T2 weighted (T2W) and Apparent diffusion coefficient (ADC) images of 1070 LARC patients retrospectively and prospectively recruited from three hospitals. To create radiomic models for GR prediction, three classifications were utilized. The radiomic model with the best performance was integrated with important clinical MRI features to create the combined model. Finally, two clinical MRI features and ten radiomic features were chosen for GR prediction. The combined model, constructed with the tumor size, MR-detected extramural venous invasion, and radiomic signature generated by Support Vector Machine (SVM), showed promising discrimination of GR, with area under the curves of 0.799 (95% CI, 0.760-0.838), 0.797 (95% CI, 0.733-0.860), 0.754 (95% CI, 0.678-0.829), and 0.727 (95% CI, 0.641-0.813) in the training and three validation datasets, respectively. Decision curve analysis verified the clinical usefulness. Furthermore, according to Kaplan-Meier curves, patients with a high likelihood of GR as determined by the combined model had better disease-free survival than those with a low probability. This radiomics model was developed based on large-sample size, multicenter datasets, and prospective validation with high radiomics quality score, and also had clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ii完成签到,获得积分10
2秒前
mmyq发布了新的文献求助10
3秒前
3秒前
3秒前
明礼A完成签到,获得积分10
4秒前
4秒前
lavender发布了新的文献求助10
4秒前
bkagyin应助HHZ采纳,获得10
4秒前
5秒前
不倒翁发布了新的文献求助10
6秒前
he完成签到,获得积分10
6秒前
7秒前
dongqing12311完成签到,获得积分10
7秒前
9秒前
he发布了新的文献求助10
9秒前
zoey完成签到,获得积分10
9秒前
虚拟的乐萱完成签到,获得积分10
9秒前
Aether发布了新的文献求助10
10秒前
10秒前
liu完成签到,获得积分10
11秒前
sci2025opt完成签到 ,获得积分10
11秒前
12秒前
GRX1110发布了新的文献求助10
14秒前
卡卡完成签到 ,获得积分10
15秒前
Ada发布了新的文献求助10
16秒前
沉默念瑶发布了新的文献求助10
16秒前
16秒前
小小垚发布了新的文献求助10
16秒前
桑榆2完成签到,获得积分10
16秒前
16秒前
思源应助吴啊采纳,获得10
18秒前
18秒前
18秒前
英姑应助虚拟的乐萱采纳,获得10
19秒前
CodeCraft应助HHZ采纳,获得10
21秒前
21秒前
清飞完成签到,获得积分10
22秒前
sevenhill应助拼搏煎蛋采纳,获得10
23秒前
多多发布了新的文献求助10
23秒前
王359发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605746
求助须知:如何正确求助?哪些是违规求助? 4690350
关于积分的说明 14863110
捐赠科研通 4702499
什么是DOI,文献DOI怎么找? 2542243
邀请新用户注册赠送积分活动 1507853
关于科研通互助平台的介绍 1472142