已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptive-Mesh Sequential Convex Programming for Space Trajectory Optimization

轨迹优化 数学优化 凸优化 正多边形 弹道 数学 空格(标点符号) 计算机科学 圆锥曲线优化 次导数 几何学 物理 最优控制 天文 操作系统
作者
Naota Kumagai,Kenshiro Oguri
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:: 1-8
标识
DOI:10.2514/1.g008107
摘要

No AccessEngineering NotesAdaptive-Mesh Sequential Convex Programming for Space Trajectory OptimizationNaoya Kumagai and Kenshiro OguriNaoya Kumagai https://orcid.org/0009-0004-8600-3145Purdue University, West Lafayette, Indiana 47907 and Kenshiro Oguri https://orcid.org/0000-0003-3670-2293Purdue University, West Lafayette, Indiana 47907Published Online:10 Jun 2024https://doi.org/10.2514/1.G008107SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Betts J. T., "Survey of Numerical Methods for Trajectory Optimization," Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 193–207. https://doi.org/10.2514/2.4231 LinkGoogle Scholar[2] Wang Z. and Grant M., "Minimum-Fuel Low-Thrust Transfers for Spacecraft: A Convex Approach," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 5, 2018, pp. 2274–2290. https://doi.org/10.1109/TAES.2018.2812558 CrossrefGoogle Scholar[3] Sagliano M., Seelbinder D., Theil S. and Lu P., "Six-Degree-of-Freedom Rocket Landing Optimization via Augmented Convex-Concave Decomposition," Journal of Guidance, Control, and Dynamics, Vol. 47, No. 1, 2024, pp. 20–35. https://doi.org/10.2514/1.G007570 LinkGoogle Scholar[4] Sagliano M., Heidecker A., Macés Hernández J., Farì S., Schlotterer M., Woicke S., Seelbinder D. and Dumont E., "Onboard Guidance for Reusable Rockets: Aerodynamic Descent and Powered Landing," AIAA Scitech 2021 Forum, AIAA Paper 2021-0862, 2021. https://doi.org/10.2514/6.2021-0862 LinkGoogle Scholar[5] Benedikter B., Zavoli A., Colasurdo G., Pizzurro S. and Cavallini E., "Convex Optimization of Launch Vehicle Ascent Trajectory with Heat-Flux and Splash-Down Constraints," Journal of Spacecraft and Rockets, Vol. 59, No. 3, 2022, pp. 900–915. https://doi.org/10.2514/1.A35194 LinkGoogle Scholar[6] Pontryagin L. S., Mathematical Theory of Optimal Processes, CRC Press, Boca Raton, FL, 1987. Google Scholar[7] Betts J. T. and Huffman W. P., "Mesh Refinement in Direct Transcription Methods for Optimal Control," Optimal Control Applications and Methods, Vol. 19, No. 1, 1998, pp. 1–21. https://doi.org/10.1002/(ISSN)1099-1514 CrossrefGoogle Scholar[8] Ross I. M. and Fahroo F., "Pseudospectral Knotting Methods for Solving Nonsmooth Optimal Control Problems," Journal of Guidance, Control, and Dynamics, Vol. 27, No. 3, 2004, pp. 397–405. https://doi.org/10.2514/1.3426 LinkGoogle Scholar[9] Jain S. and Tsiotras P., "Trajectory Optimization Using Multiresolution Techniques," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1424–1436. https://doi.org/10.2514/1.32220 LinkGoogle Scholar[10] Patterson M. A., Hager W. W. and Rao A. V., "A ph Mesh Refinement Method for Optimal Control," Optimal Control Applications and Methods, Vol. 36, No. 4, 2015, pp. 398–421. https://doi.org/10.1002/oca.2114 CrossrefGoogle Scholar[11] Liu F., Hager W. W. and Rao A. V., "Adaptive Mesh Refinement Method for Optimal Control Using Nonsmoothness Detection and Mesh Size Reduction," Journal of the Franklin Institute, Vol. 352, No. 10, 2015, pp. 4081–4106. https://doi.org/10.1016/j.jfranklin.2015.05.028 CrossrefGoogle Scholar[12] Liu F., Hager W. W. and Rao A. V., "Adaptive Mesh Refinement Method for Optimal Control Using Decay Rates of Legendre Polynomial Coefficients," IEEE Transactions on Control Systems Technology, Vol. 26, No. 4, 2018, pp. 1475–1483. https://doi.org/10.1109/TCST.2017.2702122 CrossrefGoogle Scholar[13] Mao Y., Szmuk M. and Açıkmeşe B., "Successive Convexification of Non-Convex Optimal Control Problems and Its Convergence Properties," 2016 IEEE 55th Conference on Decision and Control (CDC), Inst. of Electrical and Electronics Engineers, New York, 2016, pp. 3636–3641. https://doi.org/10.1109/CDC.2016.7798816 Google Scholar[14] Oguri K., "Successive Convexification with Feasibility Guarantee via Augmented Lagrangian for Non-Convex Optimal Control Problems," 2023 62nd IEEE Conference on Decision and Control (CDC), Inst. of Electrical and Electronics Engineers, New York, 2023, pp. 3296–3302. https://doi.org/10.1109/CDC49753.2023.10383462 Google Scholar[15] Reynolds T., Malyuta D., Mesbahi M., Acikmese B. and Carson J. M., "A Real-Time Algorithm for Non-Convex Powered Descent Guidance," AIAA Scitech 2020 Forum, AIAA Paper 2020-0844, 2020. LinkGoogle Scholar[16] Hofmann C. and Topputo F., "Rapid Low-Thrust Trajectory Optimization in Deep Space Based on Convex Programming," Journal of Guidance, Control, and Dynamics, Vol. 44, No. 7, 2021, pp. 1379–1388. https://doi.org/10.2514/1.G005839 LinkGoogle Scholar[17] Morelli A. C., Hofmann C. and Topputo F., "Robust Low-Thrust Trajectory Optimization Using Convex Programming and a Homotopic Approach," IEEE Transactions on Aerospace and Electronic Systems, Vol. 58, No. 3, 2022, pp. 2103–2116. https://doi.org/10.1109/TAES.2021.3128869 CrossrefGoogle Scholar[18] Kayama Y., Howell K. C., Bando M. and Hokamoto S., "Low-Thrust Trajectory Design with Successive Convex Optimization for Libration Point Orbits," Journal of Guidance, Control, and Dynamics, Vol. 45, No. 4, 2022, pp. 623–637. https://doi.org/10.2514/1.G005916 LinkGoogle Scholar[19] Hofmann C., Morelli A. C. and Topputo F., "Performance Assessment of Convex Low-Thrust Trajectory Optimization Methods," Journal of Spacecraft and Rockets, Vol. 60, No. 1, 2023, pp. 299–314. https://doi.org/10.2514/1.A35461 LinkGoogle Scholar[20] Oguri K. and Lantoine G., "Stochastic Sequential Convex Programming for Robust Low-Thrust Trajectory Design Under Uncertainty," AAS/AIAA Astrodynamics Specialist Conference, AAS, Charlotte, NC, 2022. Google Scholar[21] Benedikter B., Zavoli A., Wang Z., Pizzurro S. and Cavallini E., "Convex Approach to Covariance Control with Application to Stochastic Low-Thrust Trajectory Optimization," Journal of Guidance, Control, and Dynamics, Vol. 45, No. 11, 2022, pp. 2061–2075. https://doi.org/10.2514/1.G006806 LinkGoogle Scholar[22] Ridderhof J. and Tsiotras P., "Minimum-Fuel Closed-Loop Powered Descent Guidance with Stochastically Derived Throttle Margins," Journal of Guidance, Control, and Dynamics, Vol. 44, No. 3, 2021, pp. 537–547. https://doi.org/10.2514/1.G005400 LinkGoogle Scholar[23] Malyuta D., Yu Y., Elango P. and Açıkmeşe B., "Advances in Trajectory Optimization for Space Vehicle Control," Annual Reviews in Control, Vol. 52, Jan. 2021, pp. 282–315. https://doi.org/10.1016/j.arcontrol.2021.04.013 CrossrefGoogle Scholar[24] Wang Z., "A Survey on Convex Optimization for Guidance and Control of Vehicular Systems," Annual Reviews in Control, Vol. 57, Jan. 2024, Paper 100957. https://doi.org/10.1016/j.arcontrol.2024.100957 Google Scholar[25] Szmuk M., Reynolds T. P. and Açıkmeşe B., "Successive Convexification for Real-Time Six-Degree-of-Freedom Powered Descent Guidance with State-Triggered Constraints," Journal of Guidance, Control, and Dynamics, Vol. 43, No. 8, 2020, pp. 1399–1413. https://doi.org/10.2514/1.G004549 LinkGoogle Scholar[26] Acikmese B. and Ploen S. R., "Convex Programming Approach to Powered Descent Guidance for Mars Landing," Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1353–1366. https://doi.org/10.2514/1.27553 LinkGoogle Scholar[27] Mceowen S., Kamath A. G., Elango P., Kim T., Buckner S. C. and Acikmese B., "High-Accuracy 3-DoF Hypersonic Reentry Guidance via Sequential Convex Programming," AIAA Scitech Forum, AIAA Paper 2023-0300, 2023. https://doi.org/10.2514/6.2023-0300 Google Scholar[28] Kamath A. G., Elango P., Yu Y., Mceowen S., Chari G. M., Carson J. M. and Açıkmeşe B., "Real-Time Sequential Conic Optimization for Multi-Phase Rocket Landing Guidance," IFAC-PapersOnLine, Vol. 56, No. 2, 2023, pp. 3118–3125. https://doi.org/10.1016/j.ifacol.2023.10.1444 CrossrefGoogle Scholar[29] Zhou X., He R.-Z., Zhang H.-B., Tang G.-J. and Bao W.-M., "Sequential Convex Programming Method Using Adaptive Mesh Refinement for Entry Trajectory Planning Problem," Aerospace Science and Technology, Vol. 109, Feb. 2021, Paper 106374. https://doi.org/10.1016/j.ast.2020.106374 CrossrefGoogle Scholar[30] Zhao J., Li J. and Li S., "Low-Thrust Transfer Orbit Optimization Using Sequential Convex Programming and Adaptive Mesh Refinement," Journal of Spacecraft and Rockets, Vol. 61, No. 2, 2023, pp. 1–18. https://doi.org/10.2514/1.A35817 Google Scholar[31] Benedikter B., Zavoli A., Colasurdo G., Pizzurro S. and Cavallini E., "Convex Approach to Three-Dimensional Launch Vehicle Ascent Trajectory Optimization," Journal of Guidance, Control, and Dynamics, Vol. 44, No. 6, 2021, pp. 1116–1131. https://doi.org/10.2514/1.G005376 LinkGoogle Scholar[32] Oguri K., "Chance-Constrained Control for Safe Spacecraft Autonomy: Convex Programming Approach," IEEE American Control Conference (ACC), Toronto, ON, Canada, 2024 (to be published). https://doi.org/10.48550/arXiv.2403.04062 Google Scholar[33] Junkins J. L. and Taheri E., "Exploration of Alternative State Vector Choices for Low-Thrust Trajectory Optimization," Journal of Guidance, Control, and Dynamics, Vol. 42, No. 1, 2019, pp. 47–64. https://doi.org/10.2514/1.G003686 LinkGoogle Scholar[34] Longuski J. M., Guzmán J. J. and Prussing J. E., Optimal Control with Aerospace Applications, Springer, New York, 2014. https://doi.org/10.1007/978-1-4614-8945-0 CrossrefGoogle Scholar[35] Boyd S. P. and Vandenberghe L., Convex Optimization, Cambridge Univ. Press, New York, 2004, p. 134. https://doi.org/10.1017/CBO9780511804441 CrossrefGoogle Scholar[36] Kumagai N. and Oguri K., "Adaptive-Mesh Sequential Convex Programming for Space Trajectory Optimization," AAS/AIAA Astrodynamics Specialist Conference, AAS, Big Sky, MT, 2023. Google Scholar[37] Malyuta D., Reynolds T., Szmuk M., Mesbahi M., Acikmese B. and Carson J. M., "Discretization Performance and Accuracy Analysis for the Rocket Powered Descent Guidance Problem," AIAA Scitech 2019 Forum, AIAA Paper 2019-0925, 2019. https://doi.org/10.2514/6.2019-0925 LinkGoogle Scholar[38] Hull D. G., Optimal Control Theory for Applications, Mechanical Engineering Series, Springer, New York, 2003. CrossrefGoogle Scholar[39] Conway B. A. (ed.), Spacecraft Trajectory Optimization, Cambridge Aerospace Series, Cambridge Univ. Press, Cambridge, England, U.K., 2010, p. 60. https://doi.org/10.1017/CBO9780511778025 CrossrefGoogle Scholar[40] Battin R. H., An Introduction to the Mathematics and Methods of Astrodynamics, rev. ed., AIAA Education Series, AIAA, Reston, VA, 1999, Chap. 9. LinkGoogle Scholar[41] "Symbolic Toolbox, version: 9.2 (R2022b)," The MathWorks, Inc., 2023, https://www.mathworks.com. Google Scholar[42] Petropoulos A. E. and Longuski J. M., "Shape-Based Algorithm for the Automated Design of Low-Thrust, Gravity Assist Trajectories," Journal of Spacecraft and Rockets, Vol. 41, No. 5, 2004, pp. 787–796. https://doi.org/10.2514/1.13095 LinkGoogle Scholar[43] Taheri E. and Abdelkhalik O., "Initial Three-Dimensional Low-Thrust Trajectory Design," Advances in Space Research, Vol. 57, No. 3, 2016, pp. 889–903. https://doi.org/10.1016/j.asr.2015.11.034 CrossrefGoogle Scholar[44] Lofberg J., "YALMIP : A Toolbox for Modeling and Optimization in MATLAB," 2004 IEEE International Conference on Robotics and Automation (IEEE Cat No.04CH37508), Inst. of Electrical and Electronics Engineers, New York, 2004, pp. 284–289. https://doi.org/10.1109/CACSD.2004.1393890 Google Scholar[45] "The MOSEK Optimization Toolbox for MATLAB Manual, Version 10.1.," MOSEK ApS, 2023, https://docs.mosek.com/latest/toolbox/index.html. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance Metrics CrossmarkInformationCopyright © 2024 by Naoya Kumagai and Kenshiro Oguri. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAlgorithms and Data StructuresComputing, Information, and CommunicationControl TheoryData ScienceGuidance, Navigation, and Control SystemsInterplanetary SpaceflightOptimal Control TheoryOptimization AlgorithmSpace Exploration and TechnologySpace Science and TechnologySpace Systems and VehiclesSpaceflight KeywordsMission Planning and DesignTrajectory OptimizationInterplanetary SpaceflightLow-Thrust Interplanetary SpaceflightSequential Convex ProgrammingPontryagin's Minimum PrincipleAcknowledgmentsN. Kumagai acknowledges financial support for his Ph.D. study from the Shigeta Education Fund. The authors acknowledge support from Purdue University through the faculty startup fund and the U.S. Air Force Office of Scientific Research through research grant FA9550-23-1-0512.Digital Received28 November 2023Accepted19 May 2024Published online10 June 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶夜南发布了新的文献求助10
4秒前
Rondab应助Aman采纳,获得10
4秒前
李田田发布了新的文献求助10
5秒前
xiangyuan完成签到,获得积分10
5秒前
6秒前
wab完成签到,获得积分0
6秒前
笑而不语完成签到 ,获得积分10
7秒前
xiangyuan发布了新的文献求助10
10秒前
叶夜南完成签到,获得积分10
11秒前
14秒前
cc完成签到 ,获得积分10
16秒前
17秒前
羊蛋儿发布了新的文献求助10
17秒前
20秒前
22秒前
sun发布了新的文献求助10
23秒前
优雅愚志完成签到,获得积分10
24秒前
赘婿应助羊蛋儿采纳,获得10
26秒前
jixuzhuixun发布了新的文献求助10
27秒前
28秒前
自然的鹭洋完成签到,获得积分10
29秒前
xx完成签到 ,获得积分10
30秒前
33秒前
小二郎应助x1nger采纳,获得10
35秒前
FashionBoy应助Ace采纳,获得10
36秒前
赘婿应助李田田采纳,获得10
36秒前
jixuzhuixun完成签到,获得积分10
36秒前
37秒前
自由的谷丝完成签到,获得积分10
38秒前
Ava应助会撒娇的如天采纳,获得10
38秒前
42秒前
42秒前
核桃发布了新的文献求助10
45秒前
47秒前
萌萌完成签到 ,获得积分10
47秒前
Ace发布了新的文献求助10
48秒前
hyhyhyhy发布了新的文献求助20
48秒前
48秒前
50秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994433
求助须知:如何正确求助?哪些是违规求助? 3534839
关于积分的说明 11266585
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749