Constructing Built-In Electric Fields with Semiconductor Junctions and Schottky Junctions Based on Mo–MXene/Mo–Metal Sulfides for Electromagnetic Response

异质结 半导体 肖特基势垒 材料科学 光电子学 肖特基二极管 双金属 吸收(声学) 金属 电介质 纳米技术 二极管 复合材料 冶金
作者
Xiaojun Zeng,Xiao Jiang,Ya Ning,Yanfeng Gao,Renchao Che
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:16 (1) 被引量:42
标识
DOI:10.1007/s40820-024-01449-7
摘要

Abstract The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor–semiconductor–metal heterostructure system, Mo–MXene/Mo–metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott–Schottky junctions. By skillfully combining these distinct functional components (Mo–MXene, MoS 2 , metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor–semiconductor–metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo–MXene/Mo–metal sulfides featuring both semiconductor–semiconductor and semiconductor–metal interfaces. The achievements were most pronounced in Mo–MXene/Mo–Sn sulfide, which achieved remarkable reflection loss values of − 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo–metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tengy完成签到,获得积分10
刚刚
斯文败类应助dudu采纳,获得10
刚刚
刚刚
1秒前
思苇完成签到,获得积分10
1秒前
李爱国应助桃子采纳,获得10
1秒前
YJJ完成签到,获得积分10
1秒前
ddly完成签到,获得积分10
1秒前
caitlin完成签到 ,获得积分10
1秒前
屁王发布了新的文献求助10
1秒前
慕青应助奋斗映寒采纳,获得10
1秒前
名丿发布了新的文献求助10
2秒前
哈尼妞妞122完成签到,获得积分10
2秒前
Radish完成签到 ,获得积分10
3秒前
3秒前
大胆遥发布了新的文献求助10
4秒前
义气珩发布了新的文献求助10
4秒前
Lxxx_7发布了新的文献求助10
4秒前
万能图书馆应助Ck采纳,获得10
5秒前
繁星与北斗完成签到,获得积分10
5秒前
脑洞疼应助sai采纳,获得10
5秒前
丘比特应助xiaoziyi666采纳,获得10
5秒前
wanci应助我行我素采纳,获得10
6秒前
marinemiao发布了新的文献求助10
6秒前
111完成签到 ,获得积分10
6秒前
无辜黑夜完成签到,获得积分10
7秒前
8秒前
今夜不设防完成签到,获得积分10
8秒前
李健应助木子采纳,获得10
9秒前
爆米花发布了新的文献求助10
9秒前
9秒前
9秒前
可靠的老鼠完成签到,获得积分10
10秒前
落寞依珊应助master-f采纳,获得10
10秒前
wbh发布了新的文献求助10
11秒前
田様应助hu970采纳,获得10
11秒前
科研通AI2S应助钟是一梦采纳,获得10
11秒前
zzz完成签到,获得积分20
12秒前
好玩和有趣完成签到,获得积分10
12秒前
脂蛋白抗原完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740