Artificial Intelligence Based Quality Control in 3D Bio-printing

质量(理念) 控制(管理) 计算机科学 制造工程 工程类 人工智能 物理 量子力学
作者
A. Kathirvel,V. M. Gobinath
标识
DOI:10.1007/978-981-97-3048-3_14
摘要

The fabrication of tissues and organs for regenerative medicine applications has advanced significantly in the field of 3D bio-printing. Many elements, including cells, bio-materials, and growth factors, must be integrated into the creation of functional and bio-compatible constructions; this can cause variability and printing problems. Artificial intelligence (AI) has been used as a tool for 3D bio-printing quality control to get around these problems. The accuracy, reprehensibility, and efficiency of the printing process are all discussed in this study along with the present level of AI in 3D bio-printing. The success rate of complex tissue engineering applications can be raised by using AI algorithms for real-time monitoring, feedback control, and error correction. This will help to optimize the bio-printing procedure. Additionally, combining AI with other cutting-edge technologies, including computer vision and machine learning, can make it possible for 3D bioprinting to employ more complex and automated quality control procedures. The use of AI quality control in 3D bioprinting can increase regulatory compliance and standardization while maintaining the security and effectiveness of printed components. Researchers can use AI algorithms to enhance the design of printing procedures and find potential sources of inaccuracy. The use of AI in 3D bioprinting does, however, come with significant difficulties, such as the requirement for high-quality data sets, the creation of reliable algorithms that can deal with the complexity of biological systems, and the moral questions raised by the application of AI in biomedical research. Tissue engineering could undergo a revolution, thanks to the inclusion of AI quality control in 3D bioprinting, which would also make it possible to create tailored and regenerative medicine treatments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁翔完成签到 ,获得积分20
刚刚
1秒前
ccc发布了新的文献求助10
1秒前
小橘子完成签到,获得积分10
1秒前
1秒前
UP发布了新的文献求助10
2秒前
2秒前
2秒前
variant完成签到,获得积分10
2秒前
官官过完成签到,获得积分10
3秒前
小橘子发布了新的文献求助10
4秒前
隐形曼青应助多情问儿采纳,获得10
4秒前
Apei发布了新的文献求助30
4秒前
variant发布了新的文献求助10
5秒前
5秒前
拓展完成签到 ,获得积分10
5秒前
8秒前
安静的冰蓝完成签到 ,获得积分10
8秒前
Olivergaga完成签到,获得积分20
9秒前
9秒前
丁翔关注了科研通微信公众号
10秒前
Owen应助滕雪嘻嘻嘻嘻嘻采纳,获得10
11秒前
gan发布了新的文献求助10
11秒前
11秒前
12秒前
小赛哥完成签到,获得积分10
12秒前
14秒前
六尺巷完成签到,获得积分10
14秒前
开放蓝天应助LaTeXer采纳,获得10
14秒前
14秒前
淡定跳跳糖完成签到,获得积分10
15秒前
懵懂的寻冬应助丸子采纳,获得10
15秒前
Orange应助Lingtem采纳,获得10
16秒前
科研通AI6应助UP采纳,获得10
16秒前
Sunnut发布了新的文献求助10
16秒前
小赛哥发布了新的文献求助10
17秒前
superbanggg完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487