Artificial Intelligence Based Quality Control in 3D Bio-printing

质量(理念) 控制(管理) 计算机科学 制造工程 工程类 人工智能 物理 量子力学
作者
A. Kathirvel,V. M. Gobinath
标识
DOI:10.1007/978-981-97-3048-3_14
摘要

The fabrication of tissues and organs for regenerative medicine applications has advanced significantly in the field of 3D bio-printing. Many elements, including cells, bio-materials, and growth factors, must be integrated into the creation of functional and bio-compatible constructions; this can cause variability and printing problems. Artificial intelligence (AI) has been used as a tool for 3D bio-printing quality control to get around these problems. The accuracy, reprehensibility, and efficiency of the printing process are all discussed in this study along with the present level of AI in 3D bio-printing. The success rate of complex tissue engineering applications can be raised by using AI algorithms for real-time monitoring, feedback control, and error correction. This will help to optimize the bio-printing procedure. Additionally, combining AI with other cutting-edge technologies, including computer vision and machine learning, can make it possible for 3D bioprinting to employ more complex and automated quality control procedures. The use of AI quality control in 3D bioprinting can increase regulatory compliance and standardization while maintaining the security and effectiveness of printed components. Researchers can use AI algorithms to enhance the design of printing procedures and find potential sources of inaccuracy. The use of AI in 3D bioprinting does, however, come with significant difficulties, such as the requirement for high-quality data sets, the creation of reliable algorithms that can deal with the complexity of biological systems, and the moral questions raised by the application of AI in biomedical research. Tissue engineering could undergo a revolution, thanks to the inclusion of AI quality control in 3D bioprinting, which would also make it possible to create tailored and regenerative medicine treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力完成签到,获得积分10
1秒前
倦梦还发布了新的文献求助10
2秒前
Glow完成签到,获得积分10
2秒前
3秒前
3秒前
党弛完成签到,获得积分10
3秒前
威武珊发布了新的文献求助30
4秒前
7秒前
lee发布了新的文献求助10
7秒前
科研通AI2S应助zw采纳,获得30
7秒前
7秒前
踏实天空应助yu采纳,获得10
9秒前
宋文娟完成签到,获得积分10
9秒前
10秒前
orixero应助想疯采纳,获得10
10秒前
哈哈哈完成签到,获得积分10
12秒前
mimi发布了新的文献求助10
12秒前
Orange应助瞿寒采纳,获得10
13秒前
13秒前
贝贝贝完成签到,获得积分10
13秒前
13秒前
xsl完成签到 ,获得积分20
14秒前
liuliuliu发布了新的文献求助10
14秒前
温暖笑容完成签到,获得积分10
15秒前
十二个完成签到,获得积分10
15秒前
15秒前
哈哈哈发布了新的文献求助10
18秒前
凉城予梦完成签到,获得积分10
20秒前
龅牙苏发布了新的文献求助10
21秒前
22秒前
23秒前
科研通AI2S应助倦梦还采纳,获得10
24秒前
zj-3333333发布了新的文献求助10
24秒前
大磊完成签到,获得积分10
25秒前
26秒前
jinan完成签到,获得积分10
26秒前
共享精神应助mimi采纳,获得10
27秒前
27秒前
迅速泽洋发布了新的文献求助10
28秒前
福明明完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138986
求助须知:如何正确求助?哪些是违规求助? 2789907
关于积分的说明 7793124
捐赠科研通 2446296
什么是DOI,文献DOI怎么找? 1301017
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096