已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MPSA: Multi-Position Supervised Soft Attention-based convolutional neural network for histopathological image classification

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 图像(数学) 人工神经网络 机器学习 职位(财务) 软计算 计算机视觉 财务 经济
作者
Qing Bai,Zhanquan Sun,Wang Kang,Chaoli Wang,Shuqun Cheng,Jiawei Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:253: 124336-124336
标识
DOI:10.1016/j.eswa.2024.124336
摘要

In recent years, significant achievements have been made in the field of histopathological image analysis using convolutional neural networks (CNNs). However, existing CNNs fail to fully capture the important local structures and regional information in histopathological images due to the complex tissue structures and variable pathological features present in these images. They often treat all regions equally, which further exacerbates the challenge of accurately analyzing such images. Current network model can't extract deep layer features efficiently without guiding. To alleviate this problem, we propose a novel network model called Multi-Position Supervised Soft Attention (MPSA). MPSA adds regions of interest (RoI) labels at multiple feature layers for deep supervision, and then uses the supervised layers as soft attention to guide the learning of the classification network, enabling the network to accurately extract features of the lesion target. Additionally, we design a Multi-level Attention Feature Enhancement Module (MAFEM), which combines multiple levels of attention mechanisms to enhance the performance of the convolutional neural network in histopathological image classification. MAFEM includes spatial attention, soft attention of the main branch, and our proposed soft attention for multi-branch feature fusion. The proposed soft attention for multi-branch feature fusion aims to enhance the predictive performance of the classification model by activating relevant neurons in the diagnostic area in a highly activated state, while effectively avoiding noise activation. This innovative approach ensures that the model can focus on the most pertinent information, leading to improved classification accuracy. We conducted classification experiments on the liver cancer histopathological images dataset and the results showed that our method achieved a classification accuracy of 95.79%, indicating that it is very effective in the analysis of liver histopathological images. Our proposed network architecture has also demonstrated good generalization ability in other medical datasets, achieving a classification accuracy of 84.41% on the ultrasound carotid plaque dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxz3131发布了新的文献求助10
刚刚
絮语发布了新的文献求助10
1秒前
2秒前
网安真难T_T完成签到,获得积分10
3秒前
Dipper完成签到,获得积分10
3秒前
5秒前
橙子完成签到 ,获得积分10
5秒前
6秒前
10秒前
eq582522关注了科研通微信公众号
12秒前
隐形曼青应助宗忻采纳,获得10
15秒前
JJBOND完成签到,获得积分10
16秒前
lxz3131完成签到,获得积分20
17秒前
18秒前
拼搏思菱发布了新的文献求助30
25秒前
26秒前
jiangchuansm完成签到,获得积分10
26秒前
26秒前
28秒前
wang发布了新的文献求助10
30秒前
30秒前
Owen应助亦屿森采纳,获得100
30秒前
dzc完成签到,获得积分10
31秒前
31秒前
35秒前
科研通AI2S应助可靠的念柏采纳,获得10
37秒前
41秒前
Becky发布了新的文献求助10
45秒前
Brent完成签到,获得积分10
47秒前
wjq2430发布了新的文献求助10
52秒前
54秒前
wang完成签到 ,获得积分10
54秒前
Ziming发布了新的文献求助10
56秒前
sss发布了新的文献求助10
58秒前
59秒前
1分钟前
滕靖完成签到,获得积分10
1分钟前
欢喜发卡完成签到,获得积分10
1分钟前
Min完成签到 ,获得积分10
1分钟前
junjun00发布了新的文献求助10
1分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139341
求助须知:如何正确求助?哪些是违规求助? 2790257
关于积分的说明 7794680
捐赠科研通 2446703
什么是DOI,文献DOI怎么找? 1301325
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109