The value of net influx constant based on FDG PET/CT dynamic imaging in the differential diagnosis of metastatic from non-metastatic lymph nodes in lung cancer

核医学 正电子发射断层摄影术 标准摄取值 医学 接收机工作特性 肺癌 鉴别诊断 原发性肿瘤 氟脱氧葡萄糖 癌症 转移 放射科 病理 内科学
作者
Xieraili Wumener,Yarong Zhang,Zihan Zang,Xiaoxing Ye,Jiuhui Zhao,Jun Zhao,Ying Liang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4485203/v1
摘要

Abstract Objectives: This study aims to evaluate the value of the dynamic and static quantitative metabolic parameters derived from 18F-fluorodeoxyglucose (FDG) positron emission tomography/CT (PET/CT) in the differential diagnosis of metastatic from non-metastatic lymph nodes (LNs) in lung cancer and to validate them based on the results of a previous study. Methods: One hundred and twenty-one patients with lung nodules or masses detected on chest CT scan underwent 18F-FDG PET/CT dynamic + static imaging with informed consent. A retrospective collection of 126 LNs in 37 patients with lung cancer was pathologically confirmed. Static image analysis parameters including LN-SUVmax and LN-SUVmax/primary tumor SUVmax (LN-SUVmax/PT-SUVmax). Dynamic metabolic parameters including the net influx rate (Ki) and the surrogate of perfusion (K1) and of each LN were obtained by applying the irreversible two-tissue compartment model using in-house Matlab software. Ki /K1 was then calculated as a separate marker. Based on the pathological findings we divided into a metastatic group and a non-metastatic group. The c2-test was used to evaluate the agreement of the individual and combined diagnosis of each metabolic parameter with the gold standard. The Receiver-operating characteristic (ROC) analysis was performed for each parameter to determine the diagnostic efficacy in differentiating non-metastatic from metastatic LNs with high FDG-avid. P<0.05 was considered statistically significant. Results: Among the 126 FDG-avid LNs confirmed by pathology, 70 LNs were metastatic, and 56 LNs were non-metastatic. For ROC analysis, in separate assays, the dynamic metabolic parameter Ki [sensitivity (SEN) of 84.30%, specificity (SPE) of 94.60%, accuracy of 88.89% and AUC of 0.895] had a better diagnostic value than the static metabolic parameter SUVmax (SEN of 82.90%, SPE of 62.50%, accuracy of 74.60%, and AUC of 0.727) in differentiating between metastatic from non-metastatic LNs groups, respectively. In the combined diagnosis group, the combined SUVmax+Ki diagnosis had a better diagnostic value in the differential diagnosis of metastatic from non-metastatic LNs, with SEN, SPE, accuracy and AUC of 84.3%, 94.6%, 88.89%, and 0.907, respectively. Conclusion: When the cut-off value of the Ki was 0.022 ml/g/min, it had a high diagnostic value in the differential diagnosis between metastasis and non-metastasis in FDG-avid LNs of lung cancer, especially in improving the specificity. The combination of SUVmax and Ki is expected to be a reliable metabolic parameter for N-staging of lung cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7777777发布了新的文献求助10
1秒前
凌奕添完成签到 ,获得积分10
2秒前
yeheifenggao关注了科研通微信公众号
2秒前
桐桐应助KaleemUllah采纳,获得10
4秒前
5秒前
小芭乐完成签到 ,获得积分10
6秒前
6秒前
CHENHL完成签到,获得积分10
9秒前
Miracle完成签到,获得积分0
9秒前
思源应助胡图图采纳,获得10
10秒前
欢喜小霸王完成签到,获得积分10
11秒前
Believer完成签到,获得积分10
12秒前
12秒前
mm完成签到,获得积分10
13秒前
13秒前
科研通AI6.1应助wuxunxun2015采纳,获得10
15秒前
Arain完成签到,获得积分20
16秒前
白小超人完成签到 ,获得积分10
16秒前
16秒前
17秒前
Arain发布了新的文献求助10
21秒前
乔滴滴发布了新的文献求助10
21秒前
Shi完成签到,获得积分10
21秒前
耍酷曼青完成签到,获得积分10
21秒前
科研通AI6.1应助容棋采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
无花果应助hdd采纳,获得10
22秒前
一顿鸡米花完成签到,获得积分10
23秒前
24秒前
脑洞疼应助希希采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
激动的访文完成签到,获得积分10
24秒前
25秒前
火星上唇膏完成签到 ,获得积分10
26秒前
所所应助Darling采纳,获得10
26秒前
26秒前
Doki完成签到,获得积分10
26秒前
爱听歌酸奶完成签到,获得积分10
27秒前
酷波er应助Antonio采纳,获得10
28秒前
shm123321完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734883
求助须知:如何正确求助?哪些是违规求助? 5356945
关于积分的说明 15327966
捐赠科研通 4879384
什么是DOI,文献DOI怎么找? 2621880
邀请新用户注册赠送积分活动 1571089
关于科研通互助平台的介绍 1527872