Contrastive Mutual Learning with Pseudo-Label Smoothing for Hyperspectral Image Classification

高光谱成像 人工智能 平滑的 模式识别(心理学) 计算机科学 特征学习 相似性(几何) 机器学习 特征(语言学) 噪音(视频) 特征提取 图像(数学) 计算机视觉 语言学 哲学
作者
Liu Li-zhu,Hui Zhang,Yaonan Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:4
标识
DOI:10.1109/tim.2024.3406811
摘要

Semi-supervised learning has become an effective paradigm for reducing the reliance of hyperspectral image (HSI) classification on labeled data. State-of-the-art semi-supervised HSI classification methods learn supplementary knowledge from pseudo-labels, which are predicted by a deep learning model on unlabeled data. Nevertheless, these methods usually overlook the impacts of pseudo-label noise, intra-class spectral variability, and inter-class spectral similarity, which may fundamentally constrain the model's capability for refining feature representation. To address these prevalent issues, we propose a novel semi-supervised framework - contrastive mutual learning with pseudo-label smoothing (CMLP) to enable the model to learn more refined features. Firstly, we uniquely combine a mutual learning model and pseudo-label smoothing strategy to reduce the noise knowledge learned by the classification model during HSI feature extraction. Secondly, we incorporate a mutual pseudo-label guided contrastive learning approach, which helps to maximize interclass dispersion and minimize intraclass compactness, thus mitigating the problem of intra-class spectral variability and inter-class spectral similarity within HSI data. In addition, we have introduced a dynamic threshold strategy that adjusts the quantity of unlabeled samples introduced during the training process dynamically. This strategy mitigates the adverse impact from unstable predictions of unlabeled data in the early stages of training. The extensive experiments on three benchmark HSI datasets demonstrate that the proposed method can achieve competitive performance compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无聊的凉面完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
Simon完成签到 ,获得积分10
2秒前
枕安完成签到,获得积分10
3秒前
EliottLiu完成签到,获得积分10
3秒前
SciGPT应助聪慧的正豪采纳,获得10
4秒前
11发布了新的文献求助10
4秒前
4秒前
5秒前
lelelele完成签到,获得积分10
6秒前
6秒前
Jay完成签到,获得积分10
7秒前
FashionBoy应助笑点低诗桃采纳,获得10
8秒前
8秒前
青柠完成签到,获得积分10
9秒前
258369发布了新的文献求助10
11秒前
Ava应助俏皮的白柏采纳,获得10
12秒前
James- LPY发布了新的文献求助10
13秒前
千余发布了新的文献求助10
16秒前
anan完成签到,获得积分10
16秒前
19秒前
19秒前
20秒前
21秒前
莹0000完成签到,获得积分10
22秒前
23秒前
YamDaamCaa应助科研通管家采纳,获得30
24秒前
YamDaamCaa应助科研通管家采纳,获得30
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
25秒前
烟花应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
25秒前
moon发布了新的文献求助10
25秒前
幽默尔蓝发布了新的文献求助10
25秒前
默默的裘完成签到,获得积分10
27秒前
科研通AI2S应助liuzengzhang666采纳,获得10
28秒前
深情安青应助lll采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035