Contrastive Mutual Learning with Pseudo-Label Smoothing for Hyperspectral Image Classification

高光谱成像 人工智能 平滑的 模式识别(心理学) 计算机科学 特征学习 相似性(几何) 机器学习 特征(语言学) 噪音(视频) 特征提取 图像(数学) 计算机视觉 语言学 哲学
作者
Liu Li-zhu,Hui Zhang,Yaonan Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:1
标识
DOI:10.1109/tim.2024.3406811
摘要

Semi-supervised learning has become an effective paradigm for reducing the reliance of hyperspectral image (HSI) classification on labeled data. State-of-the-art semi-supervised HSI classification methods learn supplementary knowledge from pseudo-labels, which are predicted by a deep learning model on unlabeled data. Nevertheless, these methods usually overlook the impacts of pseudo-label noise, intra-class spectral variability, and inter-class spectral similarity, which may fundamentally constrain the model's capability for refining feature representation. To address these prevalent issues, we propose a novel semi-supervised framework - contrastive mutual learning with pseudo-label smoothing (CMLP) to enable the model to learn more refined features. Firstly, we uniquely combine a mutual learning model and pseudo-label smoothing strategy to reduce the noise knowledge learned by the classification model during HSI feature extraction. Secondly, we incorporate a mutual pseudo-label guided contrastive learning approach, which helps to maximize interclass dispersion and minimize intraclass compactness, thus mitigating the problem of intra-class spectral variability and inter-class spectral similarity within HSI data. In addition, we have introduced a dynamic threshold strategy that adjusts the quantity of unlabeled samples introduced during the training process dynamically. This strategy mitigates the adverse impact from unstable predictions of unlabeled data in the early stages of training. The extensive experiments on three benchmark HSI datasets demonstrate that the proposed method can achieve competitive performance compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tjxx完成签到,获得积分10
1秒前
呼同学发布了新的文献求助10
1秒前
孤独靖柏完成签到,获得积分20
1秒前
俞宛秋发布了新的文献求助10
1秒前
鲁西西发布了新的文献求助10
1秒前
科研通AI2S应助聪明梦容采纳,获得10
3秒前
3秒前
jacksin完成签到,获得积分10
5秒前
俞宛秋完成签到,获得积分10
7秒前
9秒前
10秒前
KIKI完成签到,获得积分0
13秒前
酷酷千愁应助噼里啪啦采纳,获得10
14秒前
14秒前
doa发布了新的文献求助10
15秒前
15秒前
呼同学关注了科研通微信公众号
20秒前
小毛发布了新的文献求助10
20秒前
21秒前
limbooo发布了新的文献求助20
22秒前
小二郎应助doa采纳,获得10
24秒前
呼啦呼啦发布了新的文献求助10
26秒前
Akim应助崔西周采纳,获得10
26秒前
hahada完成签到,获得积分10
27秒前
29秒前
29秒前
薛定谔的猫完成签到,获得积分10
29秒前
30秒前
jie367完成签到,获得积分20
32秒前
书生意气完成签到,获得积分10
37秒前
科目三应助狂野的山雁采纳,获得10
37秒前
jie367发布了新的文献求助10
37秒前
39秒前
学术射手发布了新的文献求助30
42秒前
43秒前
44秒前
45秒前
迷人寒梦完成签到 ,获得积分10
45秒前
cyj990522发布了新的文献求助10
46秒前
limbooo完成签到,获得积分10
46秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180770
求助须知:如何正确求助?哪些是违规求助? 2830996
关于积分的说明 7982474
捐赠科研通 2492854
什么是DOI,文献DOI怎么找? 1329874
科研通“疑难数据库(出版商)”最低求助积分说明 635802
版权声明 602954