Contrastive Mutual Learning With Pseudo-Label Smoothing for Hyperspectral Image Classification

高光谱成像 人工智能 平滑的 模式识别(心理学) 计算机科学 特征学习 相似性(几何) 机器学习 特征(语言学) 噪音(视频) 特征提取 图像(数学) 计算机视觉 语言学 哲学
作者
Liu Li-zhu,Hui Zhang,Yaonan Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:5
标识
DOI:10.1109/tim.2024.3406811
摘要

Semi-supervised learning has become an effective paradigm for reducing the reliance of hyperspectral image (HSI) classification on labeled data. State-of-the-art semi-supervised HSI classification methods learn supplementary knowledge from pseudo-labels, which are predicted by a deep learning model on unlabeled data. Nevertheless, these methods usually overlook the impacts of pseudo-label noise, intra-class spectral variability, and inter-class spectral similarity, which may fundamentally constrain the model's capability for refining feature representation. To address these prevalent issues, we propose a novel semi-supervised framework - contrastive mutual learning with pseudo-label smoothing (CMLP) to enable the model to learn more refined features. Firstly, we uniquely combine a mutual learning model and pseudo-label smoothing strategy to reduce the noise knowledge learned by the classification model during HSI feature extraction. Secondly, we incorporate a mutual pseudo-label guided contrastive learning approach, which helps to maximize interclass dispersion and minimize intraclass compactness, thus mitigating the problem of intra-class spectral variability and inter-class spectral similarity within HSI data. In addition, we have introduced a dynamic threshold strategy that adjusts the quantity of unlabeled samples introduced during the training process dynamically. This strategy mitigates the adverse impact from unstable predictions of unlabeled data in the early stages of training. The extensive experiments on three benchmark HSI datasets demonstrate that the proposed method can achieve competitive performance compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Clearly完成签到 ,获得积分10
刚刚
高高的咖啡豆完成签到,获得积分10
刚刚
mjr完成签到,获得积分20
1秒前
小马甲应助Guko采纳,获得10
1秒前
2秒前
眠妃完成签到 ,获得积分10
2秒前
123完成签到 ,获得积分10
2秒前
2秒前
种一棵星星完成签到,获得积分10
3秒前
顾矜应助青梧衔云采纳,获得10
3秒前
一周八颗蛋完成签到 ,获得积分10
3秒前
3秒前
3秒前
leapper完成签到 ,获得积分10
4秒前
4秒前
4秒前
李卓韩发布了新的文献求助10
5秒前
ocean完成签到,获得积分10
5秒前
6秒前
大个应助bulubulubiu采纳,获得10
6秒前
曾阿牛发布了新的文献求助10
7秒前
7秒前
科目三应助昵昵昵昵呀采纳,获得10
7秒前
顾矜应助xyj6486采纳,获得10
8秒前
8秒前
taotao完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
完美世界应助kkyy采纳,获得10
9秒前
残剑月发布了新的文献求助10
9秒前
堵得慌完成签到,获得积分20
10秒前
Accpt_yq完成签到,获得积分10
10秒前
11秒前
llx666发布了新的文献求助10
11秒前
11秒前
堵得慌发布了新的文献求助10
12秒前
忧郁平蝶完成签到,获得积分10
12秒前
爆米花应助失眠的云朵采纳,获得10
12秒前
NOV完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600235
求助须知:如何正确求助?哪些是违规求助? 4685911
关于积分的说明 14840612
捐赠科研通 4675789
什么是DOI,文献DOI怎么找? 2538581
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471162