A Two-branch Edge Guided Lightweight Network for infrared image saliency detection

GSM演进的增强数据速率 人工智能 图像(数学) 红外线的 边缘检测 计算机视觉 计算机科学 模式识别(心理学) 图像处理 物理 光学
作者
Zhaoying Liu,Xiang Li,Ting Zhang,Xuesi Zhang,Changming Sun,Sadaqat Ur Rehman,Jawad Ahmad
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:118: 109296-109296
标识
DOI:10.1016/j.compeleceng.2024.109296
摘要

In the dynamic landscape of saliency detection, convolutional neural networks have emerged as catalysts for innovation, but remain largely tailored for RGB imagery, falling short in the context of infrared images, particularly in memory-restricted environments. These existing approaches tend to overlook the wealth of contour information vital for a nuanced analysis of infrared images. Addressing this notable gap, we introduce the novel Two-branch Edge Guided Lightweight Network (TBENet), designed explicitly for the robust analysis of infrared image saliency detection. The main contributions of this paper are as follows. First, we formulate the saliency detection task as two subtasks, contour enhancement and foreground segmentation. Therefore, the TBENet is divided into two specialized branches: a contour prediction branch for extracting target contour and a saliency map generation branch for separating the foreground from the background. The first branch employs an encoder–decoder architecture to meticulously delineate object contours, serving as a guiding blueprint for the second branch. This latter segment adeptly integrates spatial and semantic data, creating a precise saliency map that is refined further by an innovative edge-weighted contour loss function. Second, to enhance feature integration capabilities, we propose depthwise multi-scale and multi-cue modules, facilitating sophisticated feature aggregation. Third, a high-level linear bottleneck module is devised to ensure the extraction of rich semantic information, and by replacing the standard convolution with the depthwise convolution, it is beneficial to reduce model complexity. Additional, we reduce the number of channels of the feature maps from each stage of the decoder to further enhance the lightweight of the model. Last, we construct a novel infrared ship dataset Small-IRShip to train and evaluate our proposed model. Experimental results on the homemade dataset Small-IRShip and two publicly available datasets, namely RGB-T and IRSTD-1k, demonstrate TBENet's superior performance over state-of-the-art methods, affirming its effectiveness in harnessing edge information and incorporating advanced feature integration strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助王佳音采纳,获得10
2秒前
小二郎应助mr采纳,获得10
3秒前
赘婿应助jxas采纳,获得100
3秒前
乐观生活发布了新的文献求助10
3秒前
思源应助ant采纳,获得10
4秒前
4秒前
4秒前
星梦完成签到 ,获得积分10
5秒前
小二郎应助拾忆采纳,获得10
6秒前
6秒前
如意向雪发布了新的文献求助30
7秒前
风趣的傲之完成签到,获得积分10
7秒前
7秒前
慕青应助带鱼采纳,获得10
8秒前
8秒前
李浩完成签到,获得积分10
8秒前
helllxi发布了新的文献求助20
9秒前
11秒前
ice发布了新的文献求助10
11秒前
13秒前
14秒前
15秒前
毅力鸟发布了新的文献求助10
16秒前
16秒前
小白发布了新的文献求助10
17秒前
在水一方应助只然采纳,获得10
19秒前
20秒前
唐帅发布了新的文献求助10
20秒前
21秒前
21秒前
猫咪的撒库拉酱完成签到,获得积分10
21秒前
多情的初蓝完成签到 ,获得积分10
22秒前
大个应助合适的修洁采纳,获得10
24秒前
Lll发布了新的文献求助10
25秒前
淳于汲发布了新的文献求助10
25秒前
酷波er应助ice采纳,获得10
25秒前
26秒前
Dou_Xiaowen发布了新的文献求助10
26秒前
paddi发布了新的文献求助10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524906
求助须知:如何正确求助?哪些是违规求助? 3105708
关于积分的说明 9275879
捐赠科研通 2802998
什么是DOI,文献DOI怎么找? 1538264
邀请新用户注册赠送积分活动 716147
科研通“疑难数据库(出版商)”最低求助积分说明 709278