Sampling-based test scenarios searching method for autonomous system robustness evaluation

稳健性(进化) 计算机科学 采样(信号处理) 自适应采样 数据挖掘 边界(拓扑) 算法 数学 统计 蒙特卡罗方法 生物化学 化学 滤波器(信号处理) 计算机视觉 基因 数学分析
作者
Hui Lu,Shiqi Wang,Yuxuan Zhang,Shi Cheng
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:162: 111808-111808
标识
DOI:10.1016/j.asoc.2024.111808
摘要

The robustness evaluation for autonomous systems is essential before implementing them in safety-critical fields. Searching the challenging test scenarios by adaptive sampling algorithm in the transition regions between different performance modes, named performance boundary, becomes an efficient method to evaluate the robustness of systems. This paper proposes a novel model-independent nearest neighbors adaptive sampling algorithm considering gradient and distance, named GDNNAS. GDNNAS designs a special evaluation criterion to identify samples within boundary regions and a searching method to generate new samples. A novel elimination criterion is proposed to ensure the quality of samples and an adaptive stopping criterion is proposed to stop the sampling process adaptively. Considering the lack of unified data sets and metrics to assess adaptive sampling methods for searching the performance boundary, we proposed a comparison platform consisting of nine simulated systems under test (SSUT) as adaptive sampling benchmarks and four evaluation metrics to evaluate the adaptive sampling method quantitatively. We assess GDNNAS and two other adaptive sampling algorithms with the nine SSUTs. The experimental result proves that samples generated by GDNNAS are precisely located at and cover the performance boundary regions. In addition, we analyze the effectiveness of the comparison platform. Experimental result shows that the proposed SSUTs and evaluation metrics can comprehensively reflect the performance of the algorithm from various aspects and reveal the characteristics of the adaptive sampling algorithms. To verify the practicability of GDNNAS, a path planning system is used for testing GDNNAS, and the experiment result proves that GDNNAS performs outstandingly in practical system robustness evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
5秒前
6秒前
6秒前
xiaomili发布了新的文献求助10
7秒前
8秒前
大个应助caiyuedong采纳,获得10
10秒前
10秒前
儒雅HR完成签到,获得积分10
10秒前
11秒前
鳗鱼友灵发布了新的文献求助10
11秒前
几米杨完成签到,获得积分10
11秒前
所所应助o10采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
柯一一应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
柯一一应助科研通管家采纳,获得10
12秒前
聪明白秋应助科研通管家采纳,获得20
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
FashionBoy应助赵程程采纳,获得10
13秒前
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
柯一一应助科研通管家采纳,获得10
13秒前
Susan发布了新的文献求助10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
YiWei发布了新的文献求助10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502597
关于积分的说明 11109039
捐赠科研通 3233376
什么是DOI,文献DOI怎么找? 1787315
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122