导电体
离子液体
离子键合
纳米技术
材料科学
化学
离子
有机化学
复合材料
催化作用
作者
Yoshiki Kiyota,Seiji Ono,Kaito Sasaki,Nanako Tamai,Hironori Sugimoto,Yosuke Okamura,Shinichi Koguchi,Masashi Higuchi,Yu Nagase,Naoki Shinyashiki,Sayaka Uchida,Takeru Ito
标识
DOI:10.1002/cnma.202400188
摘要
Abstract Conductive polyoxovanadate inorganic‐organic hybrid crystals comprising alkaline earth metal (divalent) cations were successfully obtained with the use of an ionic‐liquid cation having imidazolium and methacryloyl moieties (denoted as MAImC 1 ). Two types of crystals containing decavanadate ([V 10 O 28 ] 6− , V 10 ) anion were obtained as [MAImC 1 ] 2 Ca 2 [V 10 O 28 ] ⋅ 16H 2 O ⋅ 2 C 2 H 5 OH (MAImC 1 −Ca−V 10 ) and [MAImC 1 ] 2 Mg 2 [V 10 O 28 ] ⋅ 18H 2 O ⋅ 2 C 2 H 5 OH (MAImC 1 −Mg−V 10 ). Connection modes of the divalent cations were different: Ca 2+ cations were connected to V 10 to form a {[Ca(H 2 O) 5 ] 2 V 10 O 28 ]} 2− anion in MAImC 1 −Ca−V 10 , while a discrete [V 10 O 28 ] 6− and hydrated [Mg(H 2 O) 6 ] 2+ were present in MAImC 1 −Mg−V 10 . Conductivities under a fully humidified condition at 353 K (80 °C) were high values of 3.0×10 −4 S cm −1 for MAImC 1 −Ca−V 10 and 3.3×10 −3 S cm −1 for MAImC 1 −Mg−V 10 , respectively. The higher conductivity under hydrated conditions suggests proton as a conductive carrier. The better conductivity of MAImC 1 −Mg−V 10 is plausibly derived from the more effective hydrogen‐bonded network in the crystal lattice.
科研通智能强力驱动
Strongly Powered by AbleSci AI