Electroreduction of CO2 in highly acidic environments holds promise for enhancing CO2 utilization efficiency. Due to the HER interference and structural instability, however, challenges in improving the selectivity and stability toward multicarbon (C2+) products remain. In this study, we proposed an "armor protection" strategy involving the deposition of ultrathin, hydrophobic SiO2 onto the Cu surface (Cu/SiO2) through a simple one-step hydrolysis. Our results confirmed the effective inhibition of HER by a hydrophobic SiO2 layer, leading to a high Faradaic efficiency (FE) of up to 76.9% for C2+ products at a current density of 900 mA cm–2 under a strongly acidic condition with a pH of 1. The observed high performance surpassed the reported performance for most previously studied Cu-based catalysts in acidic CO2RR systems. Furthermore, the ultrathin hydrophobic SiO2 shell was demonstrated to effectively prevent the structural reconstruction of Cu and preserve the oxidation state of Cuδ+ active sites during CO2RR. Additionally, it hindered the accumulation of K+ ions on the catalyst surface and diffusion of in situ generated OH– ions away from the electrode, thereby favoring C2+ product generation. In situ Raman analyses coupled with DFT simulations further elucidated that the SiO2 shell proficiently modulated *CO adsorption behavior on the Cu/SiO2 catalyst by reducing *CO adsorption energy, facilitating the C–C coupling. This work offers a compelling strategy for rationally designing and exploiting highly stable and active Cu-based catalysts for CO2RR in highly acidic environments.