Using large language model to guide patients to create efficient and comprehensive clinical care message

清晰 医疗保健 完备性(序理论) 计算机科学 医学教育 心理学 医疗急救 医学 生物化学 数学分析 化学 数学 经济 经济增长
作者
Siru Liu,Aileen P. Wright,Allison B. McCoy,Sean S Huang,Julian Z Genkins,Josh F. Peterson,Yaa Kumah-Crystal,William Martínez,Babatunde Carew,Dara Mize,Bryan D. Steitz,Adam Wright
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (8): 1665-1670
标识
DOI:10.1093/jamia/ocae142
摘要

Abstract Objective This study aims to investigate the feasibility of using Large Language Models (LLMs) to engage with patients at the time they are drafting a question to their healthcare providers, and generate pertinent follow-up questions that the patient can answer before sending their message, with the goal of ensuring that their healthcare provider receives all the information they need to safely and accurately answer the patient’s question, eliminating back-and-forth messaging, and the associated delays and frustrations. Methods We collected a dataset of patient messages sent between January 1, 2022 to March 7, 2023 at Vanderbilt University Medical Center. Two internal medicine physicians identified 7 common scenarios. We used 3 LLMs to generate follow-up questions: (1) Comprehensive LLM Artificial Intelligence Responder (CLAIR): a locally fine-tuned LLM, (2) GPT4 with a simple prompt, and (3) GPT4 with a complex prompt. Five physicians rated them with the actual follow-ups written by healthcare providers on clarity, completeness, conciseness, and utility. Results For five scenarios, our CLAIR model had the best performance. The GPT4 model received higher scores for utility and completeness but lower scores for clarity and conciseness. CLAIR generated follow-up questions with similar clarity and conciseness as the actual follow-ups written by healthcare providers, with higher utility than healthcare providers and GPT4, and lower completeness than GPT4, but better than healthcare providers. Conclusion LLMs can generate follow-up patient messages designed to clarify a medical question that compares favorably to those generated by healthcare providers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
dichloro发布了新的文献求助10
3秒前
酷波er应助Cherry采纳,获得10
3秒前
深情安青应助S8采纳,获得10
3秒前
youhebuke发布了新的文献求助10
3秒前
4秒前
嗡嗡嗡发布了新的文献求助10
4秒前
穿多点完成签到,获得积分10
4秒前
jby完成签到 ,获得积分10
5秒前
5秒前
sherrycofe应助百草采纳,获得10
7秒前
7秒前
宁才才发布了新的文献求助10
8秒前
年糕汤发布了新的文献求助10
9秒前
10秒前
dengy完成签到,获得积分10
10秒前
传奇3应助Famous小人物采纳,获得10
13秒前
viahit发布了新的文献求助10
14秒前
15秒前
求求接收吧完成签到,获得积分10
16秒前
可靠访蕊完成签到 ,获得积分10
16秒前
陈军应助hyx采纳,获得20
16秒前
枝桠发布了新的文献求助10
17秒前
受伤的怀绿完成签到,获得积分10
17秒前
迷路的小牛马完成签到,获得积分10
19秒前
金豆发布了新的文献求助10
20秒前
22秒前
风中傻姑完成签到 ,获得积分10
22秒前
完美世界应助尊敬的胜采纳,获得10
22秒前
我是老大应助sapphire_yy采纳,获得10
25秒前
爆米花应助王小元采纳,获得10
25秒前
第三人称的自己完成签到,获得积分10
25秒前
25秒前
GXY关闭了GXY文献求助
25秒前
26秒前
木子完成签到,获得积分10
26秒前
kaka091完成签到,获得积分10
27秒前
852应助科研通管家采纳,获得10
27秒前
李健应助科研通管家采纳,获得10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135113
求助须知:如何正确求助?哪些是违规求助? 2786095
关于积分的说明 7775189
捐赠科研通 2441915
什么是DOI,文献DOI怎么找? 1298256
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600839