砷
肠道菌群
砷毒性
丁酸盐
新陈代谢
蛋氨酸
化学
生物化学
失调
毒性
肝损伤
生物
发酵
药理学
氨基酸
有机化学
作者
Han Li,Fuping Ye,Zhenyang Li,Xiaoshan Peng,Lu Wu,Qizhan Liu
标识
DOI:10.1016/j.envint.2024.108824
摘要
The drivers of changes in gut microbiota under arsenic exposure and the mechanism by which microbiota affect arsenic metabolism are still unclear. Here, C57BL/6 mice were exposed to 0, 5, or 10 ppm NaAsO2 in drinking water for 6 months. The results showed that arsenic exposure induced liver injury and increased the abundance of folic acid (FA)/vitamin B12 (VB12)- and butyrate-synthesizing microbiota. Statistical analysis and in vitro cultures showed that microbiota were altered to meet the demand for FA/VB12 by arsenic metabolism and to resist the toxicity of unmetabolized arsenic. However, at higher arsenic levels, changes of these microbiota were inconsistent. A 3D molecular simulation showed that arsenic bound to methionine synthase (MTR), which was confirmed by SEC-UV-DAD (1 μM recombinant human MTR was purified with 0 or 2 μM NaAsO2 at room temperature for 1 h) and fluorescence-labeled arsenic co-localization (primary hepatocytes were exposed to 0, 0.5, or 1 μM ReAsH-EDT2 for 24 h) in non-cellular and cellular systems. Mechanistically, the arsenic-MTR interaction in the liver interferes with the utilization of FA/VB12, which increases arsenic retention and thus results in a substantial increase in the abundance of butyrate-synthesizing microbiota compared to FA/VB12-synthesizing microbiota. By exposing C57BL/6J mice to 0 or 10 ppm NaAsO2 with or without FA (6 mg/L) and VB12 (50 μg/L) supplementation in their drinking water for 6 months, we constructed an FA/VB12 intervention mouse model and found that FA/VB12 supplementation blocked the disturbance of gut microbiota, restored MTR levels, promoted arsenic metabolism, and alleviated liver injury. We demonstrate that the change of gut microbiota is a response to arsenic metabolism, a process influenced by the arsenic-MTR interaction. This study provides new insights for understanding the relationship between gut microbiota and arsenic metabolism and present therapeutic targets for arseniasis.
科研通智能强力驱动
Strongly Powered by AbleSci AI