Unmasking Illusions: Understanding Human Perception of Audiovisual Deepfakes

幻觉 感知 认知心理学 心理学 视错觉 沟通 神经科学
作者
Ammarah Hashmi,Sahibzada Adil Shahzad,Chia‐Wen Lin,Yu Tsao,Hsin‐Min Wang
标识
DOI:10.36227/techrxiv.171560542.29368554/v1
摘要

The emergence of contemporary deepfakes has attracted significant attention in machine learning research, as artificial intelligence (AI) generated synthetic media increases the incidence of misinterpretation and is difficult to distinguish from genuine content. Currently, machine learning techniques have been extensively studied for automatically detecting deepfakes. However, human perception has been less explored. Malicious deepfakes could ultimately cause public and social problems. Can we humans correctly perceive the authenticity of the content of the videos we watch? The answer is obviously uncertain; therefore, this paper aims to evaluate the human ability to discern deepfake videos through a subjective study. We present our findings by comparing human observers to five state-ofthe-art audiovisual deepfake detection models. To this end, we used gamification concepts to provide 110 participants (55 native English speakers and 55 non-native English speakers) with a webbased platform where they could access a series of 40 videos (20 real and 20 fake) to determine their authenticity. Each participant performed the experiment twice with the same 40 videos in different random orders. The videos are manually selected from the FakeAVCeleb dataset. We found that all AI models performed better than humans when evaluated on the same 40 videos. The study also reveals that while deception is not impossible, humans tend to overestimate their detection capabilities. Our experimental results may help benchmark human versus machine performance, advance forensics analysis, and enable adaptive countermeasures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大雯仔完成签到,获得积分20
刚刚
从容发布了新的文献求助10
1秒前
科研通AI5应助云云然采纳,获得10
5秒前
你滴勋宗啊完成签到,获得积分10
8秒前
lihongjie完成签到,获得积分10
9秒前
汉堡包应助从容采纳,获得10
12秒前
科研通AI5应助chentle采纳,获得10
13秒前
chen完成签到,获得积分10
14秒前
16秒前
18秒前
21秒前
21秒前
22秒前
23秒前
hao123发布了新的文献求助10
23秒前
天空之城完成签到,获得积分10
24秒前
zyj发布了新的文献求助10
26秒前
古或今完成签到,获得积分10
26秒前
云云然发布了新的文献求助10
28秒前
潇洒的如松完成签到,获得积分10
28秒前
颜又菱发布了新的文献求助10
29秒前
29秒前
34秒前
任大师兄应助古或今采纳,获得10
36秒前
就是爱问完成签到,获得积分10
40秒前
40秒前
所所应助janice采纳,获得10
42秒前
于于于发布了新的文献求助10
42秒前
43秒前
46秒前
hihi发布了新的文献求助10
48秒前
49秒前
托丽莲睡拿完成签到,获得积分10
51秒前
归诚发布了新的文献求助10
51秒前
Eatanicecube完成签到,获得积分10
53秒前
53秒前
54秒前
科研通AI5应助ze采纳,获得10
56秒前
57秒前
58秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735888
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016230
捐赠科研通 2996269
什么是DOI,文献DOI怎么找? 1644011
邀请新用户注册赠送积分活动 781681
科研通“疑难数据库(出版商)”最低求助积分说明 749425