Low Thermal Conductivity Induced Thermoelectric Improvement in Pristine SnTe via High-Pressure Engineering

热电效应 热导率 材料科学 热电材料 热的 工程物理 高压 热力学 复合材料 工程类 物理
作者
Tao Chen,Bowen Zheng,Xuemei Zhang,Manman Yang,Jianbo Zhu,Xiangyang Dong,Xiaobing Liu,Jian Zhang,Xiaoying Qin,Yongsheng Zhang
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:7 (10): 4376-4384 被引量:1
标识
DOI:10.1021/acsaem.4c00249
摘要

Lead chalcogenide-based compounds (SnTe) are state-of-the-art thermoelectric materials. However, the performance of environmentally friendly p-type SnTe is inferior due to its high hole concentration and high thermal conductivity. However, a high-pressure strategy is a beneficial method for property improvement through structural modification and defect engineering. Herein, we investigated the behaviors of different defects upon the different pressures and found that the formation energy of VSn2– is gradually increased with the increased pressure, which suggests that the high hole concentration can be reduced to some extent. Meanwhile, the thermoelectric performance of SnTe synthesized under high pressure (HP) is investigated and compared with that of samples prepared by conventional spark plasma sintering (SPS). Importantly, the thermal conductivity has a huge decrease from 4.27 to 1.67 Wm–1 K–1 due to the stronger phonon scattering originating from formed nanoparticles under HP. As a result, a large ZTmax ∼ 0.40 (at 773 K) is achieved for the pure SnTe sample at 2 GPa pressure, which is ∼40% larger than that SnTe sample obtained by SPS. Present results demonstrate that the high-pressure synthesis is an effective way to improve the thermoelectric performance of SnTe, suggesting that HP is an alternative measure for designing thermoelectric materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
all完成签到,获得积分10
刚刚
ckmen5完成签到 ,获得积分10
刚刚
刚刚
闵祥婷完成签到,获得积分20
刚刚
科研民工完成签到,获得积分10
刚刚
活泼宛海完成签到 ,获得积分10
1秒前
专注的问寒完成签到,获得积分0
1秒前
1秒前
科目三应助务实的犀牛采纳,获得10
1秒前
FashionBoy应助lirongcas采纳,获得10
1秒前
XX完成签到,获得积分10
1秒前
科研通AI6应助崽崽采纳,获得10
2秒前
爱学习的羊完成签到,获得积分10
2秒前
Kyrie完成签到,获得积分10
2秒前
浅陌初心完成签到 ,获得积分10
3秒前
3秒前
4秒前
5秒前
NexusExplorer应助优秀傲松采纳,获得10
5秒前
huangtao完成签到,获得积分20
5秒前
sunzyu完成签到,获得积分20
5秒前
承欢完成签到,获得积分10
5秒前
幸福大碗完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
树L完成签到,获得积分10
6秒前
朱加凤完成签到,获得积分10
6秒前
BaiX完成签到,获得积分10
6秒前
小z完成签到,获得积分10
7秒前
7秒前
晚香玉发布了新的文献求助10
7秒前
wu无完成签到,获得积分10
7秒前
yifan92完成签到,获得积分10
7秒前
7秒前
8秒前
fenmiao完成签到,获得积分10
8秒前
道明嗣完成签到 ,获得积分10
8秒前
skyfall发布了新的文献求助10
8秒前
8秒前
SciGPT应助林洛沁采纳,获得10
8秒前
拼搏的飞薇完成签到,获得积分10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197