已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Autonomous driving in traffic with end-to-end vision-based deep learning

计算机科学 公制(单位) 人工智能 端到端原则 制动器 辍学(神经网络) 一般化 深度学习 机器学习 节气门 模拟 汽车工程 工程类 数学分析 运营管理 数学
作者
Sergio Paniego,Enrique Shinohara,José María Plaza
出处
期刊:Neurocomputing [Elsevier]
卷期号:594: 127874-127874 被引量:5
标识
DOI:10.1016/j.neucom.2024.127874
摘要

This paper presents a shallow end-to-end vision-based deep learning approach for autonomous vehicle driving in traffic scenarios. The primary objectives include lane keeping and maintaining a safe distance from preceding vehicles. This study leverages an imitation learning approach, creating a supervised dataset for robot control from expert agent demonstrations using the state-of-the-art Carla simulator in different traffic conditions. This dataset encompasses three different versions complementary to each other and we have made it publicly available along with the rest of the materials. The PilotNet neural model is utilized in two variants: the first one with complementary outputs for brake and throttle control commands along with dropout; the second one incorporates these improvements and adds the vehicle speed. Both models have been trained with the aforementioned dataset. The experimental results demonstrate that the models, despite their simplicity and shallow architecture, including only small-scale changes, successfully drive in traffic conditions without sacrificing performance in free-road environments, broadening their area of application widely. Additionally, the second model adeptly maintains a safe distance from leading cars and exhibits satisfactory generalization capabilities to diverse vehicle types. A new evaluation metric to measure the distance to the front vehicle has been created and added to Behavior Metrics; an open-source autonomous driving assessment tool built on CARLA that performs experimental validations of autonomous driving solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助szy采纳,获得10
刚刚
111关闭了111文献求助
1秒前
lysixsixsix完成签到,获得积分10
3秒前
完美世界应助水门采纳,获得30
6秒前
6秒前
Orange应助小飞鼠采纳,获得10
7秒前
满意的破茧完成签到,获得积分20
7秒前
小衰帅完成签到,获得积分10
8秒前
lyayaru完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
11秒前
kyyy发布了新的文献求助10
11秒前
11秒前
所所应助爱听歌蜗牛采纳,获得10
11秒前
mzh完成签到,获得积分10
12秒前
14秒前
15秒前
奋进号发布了新的文献求助10
15秒前
16秒前
szy发布了新的文献求助10
17秒前
乐乐应助lyayaru采纳,获得10
17秒前
17秒前
cy完成签到 ,获得积分10
18秒前
linyalala发布了新的文献求助10
18秒前
SYLH应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
小飞鼠发布了新的文献求助10
20秒前
不懈奋进应助科研通管家采纳,获得30
20秒前
SYLH应助科研通管家采纳,获得10
20秒前
SYLH应助科研通管家采纳,获得10
20秒前
科研通AI5应助yy采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
SYLH应助科研通管家采纳,获得10
20秒前
迟大猫应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538747
求助须知:如何正确求助?哪些是违规求助? 3116472
关于积分的说明 9325379
捐赠科研通 2814343
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720644
科研通“疑难数据库(出版商)”最低求助积分说明 712109