已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning–Based Approach for Identifying and Measuring Focal Liver Lesions on Contrast‐Enhanced MRI

麦克内马尔试验 医学 组内相关 磁共振成像 精确检验 放射科 Sørensen–骰子系数 核医学 皮尔逊积矩相关系数 对比度(视觉) 磁共振弥散成像 有效扩散系数 分割 人工智能 图像分割 外科 计算机科学 数学 统计 临床心理学 心理测量学
作者
Hao‐Ran Dai,Yuyao Xiao,Caixia Fu,Robert Grimm,Heinrich von Busch,Bram Stieltjes,Moon Hyung Choi,Zhoubing Xu,Guillaume Chabin,Chun Yang,Mengsu Zeng
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.29404
摘要

Background The number of focal liver lesions (FLLs) detected by imaging has increased worldwide, highlighting the need to develop a robust, objective system for automatically detecting FLLs. Purpose To assess the performance of the deep learning–based artificial intelligence (AI) software in identifying and measuring lesions on contrast‐enhanced magnetic resonance imaging (MRI) images in patients with FLLs. Study Type Retrospective. Subjects 395 patients with 1149 FLLs. Field Strength/Sequence The 1.5 T and 3 T scanners, including T1‐, T2‐, diffusion‐weighted imaging, in/out‐phase imaging, and dynamic contrast‐enhanced imaging. Assessment The diagnostic performance of AI, radiologist, and their combination was compared. Using 20 mm as the cut‐off value, the lesions were divided into two groups, and then divided into four subgroups: <10, 10–20, 20–40, and ≥40 mm, to evaluate the sensitivity of radiologists and AI in the detection of lesions of different sizes. We compared the pathologic sizes of 122 surgically resected lesions with measurements obtained using AI and those made by radiologists. Statistical Tests McNemar test, Bland–Altman analyses, Friedman test, Pearson's chi‐squared test, Fisher's exact test, Dice coefficient, and intraclass correlation coefficients. A P ‐value <0.05 was considered statistically significant. Results The average Dice coefficient of AI in segmentation of liver lesions was 0.62. The combination of AI and radiologist outperformed the radiologist alone, with a significantly higher detection rate (0.894 vs. 0.825) and sensitivity (0.883 vs. 0.806). The AI showed significantly sensitivity than radiologists in detecting all lesions <20 mm (0.848 vs. 0.788). Both AI and radiologists achieved excellent detection performance for lesions ≥20 mm (0.867 vs. 0.881, P = 0.671). A remarkable agreement existed in the average tumor sizes among the three measurements ( P = 0.174). Data Conclusion AI software based on deep learning exhibited practical value in automatically identifying and measuring liver lesions. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柏事完成签到,获得积分10
1秒前
2秒前
2秒前
科研通AI2S应助さくま采纳,获得30
3秒前
石在可爱完成签到,获得积分20
5秒前
5秒前
ChenHan应助off采纳,获得10
5秒前
5秒前
6秒前
6秒前
科研痛发布了新的文献求助10
6秒前
6秒前
Hellolyj完成签到 ,获得积分10
9秒前
10秒前
传奇3应助单身的凡雁采纳,获得10
10秒前
热心采枫完成签到 ,获得积分10
12秒前
wuta发布了新的文献求助10
13秒前
dyf完成签到,获得积分20
14秒前
16秒前
17秒前
Hello应助向光采纳,获得10
18秒前
18秒前
18秒前
MARKTTE给MARKTTE的求助进行了留言
19秒前
22秒前
22秒前
朴素凝珍发布了新的文献求助30
22秒前
22秒前
23秒前
小稻草人发布了新的文献求助10
23秒前
充电宝应助我不是急性子采纳,获得10
24秒前
粥粥卷完成签到,获得积分10
25秒前
26秒前
27秒前
27秒前
虚拟的小虾米完成签到,获得积分10
28秒前
28秒前
材料虎完成签到,获得积分10
30秒前
李子完成签到,获得积分10
31秒前
研友_nEWRJ8发布了新的文献求助10
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241626
求助须知:如何正确求助?哪些是违规求助? 2886085
关于积分的说明 8241566
捐赠科研通 2554630
什么是DOI,文献DOI怎么找? 1382714
科研通“疑难数据库(出版商)”最低求助积分说明 649622
邀请新用户注册赠送积分活动 625279