Deep Learning–Based Approach for Identifying and Measuring Focal Liver Lesions on Contrast‐Enhanced MRI

麦克内马尔试验 医学 组内相关 磁共振成像 精确检验 放射科 Sørensen–骰子系数 核医学 皮尔逊积矩相关系数 对比度(视觉) 磁共振弥散成像 有效扩散系数 分割 人工智能 图像分割 外科 计算机科学 数学 统计 临床心理学 心理测量学
作者
Hao‐Ran Dai,Yuyao Xiao,Caixia Fu,Robert Grimm,Heinrich von Busch,Bram Stieltjes,Moon Hyung Choi,Zhoubing Xu,Guillaume Chabin,Chun Yang,Mengsu Zeng
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.29404
摘要

Background The number of focal liver lesions (FLLs) detected by imaging has increased worldwide, highlighting the need to develop a robust, objective system for automatically detecting FLLs. Purpose To assess the performance of the deep learning–based artificial intelligence (AI) software in identifying and measuring lesions on contrast‐enhanced magnetic resonance imaging (MRI) images in patients with FLLs. Study Type Retrospective. Subjects 395 patients with 1149 FLLs. Field Strength/Sequence The 1.5 T and 3 T scanners, including T1‐, T2‐, diffusion‐weighted imaging, in/out‐phase imaging, and dynamic contrast‐enhanced imaging. Assessment The diagnostic performance of AI, radiologist, and their combination was compared. Using 20 mm as the cut‐off value, the lesions were divided into two groups, and then divided into four subgroups: <10, 10–20, 20–40, and ≥40 mm, to evaluate the sensitivity of radiologists and AI in the detection of lesions of different sizes. We compared the pathologic sizes of 122 surgically resected lesions with measurements obtained using AI and those made by radiologists. Statistical Tests McNemar test, Bland–Altman analyses, Friedman test, Pearson's chi‐squared test, Fisher's exact test, Dice coefficient, and intraclass correlation coefficients. A P ‐value <0.05 was considered statistically significant. Results The average Dice coefficient of AI in segmentation of liver lesions was 0.62. The combination of AI and radiologist outperformed the radiologist alone, with a significantly higher detection rate (0.894 vs. 0.825) and sensitivity (0.883 vs. 0.806). The AI showed significantly sensitivity than radiologists in detecting all lesions <20 mm (0.848 vs. 0.788). Both AI and radiologists achieved excellent detection performance for lesions ≥20 mm (0.867 vs. 0.881, P = 0.671). A remarkable agreement existed in the average tumor sizes among the three measurements ( P = 0.174). Data Conclusion AI software based on deep learning exhibited practical value in automatically identifying and measuring liver lesions. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大白完成签到 ,获得积分10
3秒前
炎炎夏无声完成签到 ,获得积分10
7秒前
doclarrin完成签到 ,获得积分10
8秒前
不想洗碗完成签到 ,获得积分10
10秒前
longmad完成签到,获得积分10
13秒前
QiaoHL完成签到 ,获得积分10
15秒前
15秒前
17秒前
yangjoy完成签到 ,获得积分10
17秒前
ybm3s发布了新的文献求助10
21秒前
雪酪芋泥球完成签到 ,获得积分10
24秒前
Moonflower完成签到,获得积分10
25秒前
26秒前
27秒前
米博士完成签到,获得积分10
27秒前
剑指东方是为谁应助Justtry采纳,获得10
28秒前
张振宇完成签到 ,获得积分10
28秒前
ybm3s完成签到,获得积分10
30秒前
fomo完成签到,获得积分10
34秒前
轴承完成签到 ,获得积分10
35秒前
科研通AI2S应助kk采纳,获得10
35秒前
37秒前
41秒前
鹏826完成签到 ,获得积分10
41秒前
45秒前
46秒前
47秒前
舒适静丹完成签到,获得积分10
47秒前
Yes0419完成签到,获得积分10
48秒前
baner发布了新的文献求助10
50秒前
横扫饥饿发布了新的文献求助10
51秒前
Lanny完成签到 ,获得积分10
51秒前
可爱邓邓完成签到 ,获得积分10
52秒前
甜甜的以筠完成签到 ,获得积分10
52秒前
53秒前
cdercder应助科研通管家采纳,获得10
53秒前
cdercder应助科研通管家采纳,获得10
53秒前
科研通AI2S应助kk采纳,获得10
56秒前
JUAN完成签到,获得积分10
56秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733493
求助须知:如何正确求助?哪些是违规求助? 3277642
关于积分的说明 10003648
捐赠科研通 2993705
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944