YOLOv8n-GAM : an improved surface defect detection network for hot-rolled strip steel

材料科学 热轧 冶金
作者
Huanwei Xu,Xianghui Xiao,Zewei Zhao,Zhonglai Wang
出处
期刊:Engineering research express [IOP Publishing]
标识
DOI:10.1088/2631-8695/ad5417
摘要

Abstract Production defects caused by irresistible factors such as process design problems or differences in steel properties in strip production affect the economic benefits of the enterprise and threaten production safety. Traditional defect detection methods are difficult to achieve real-time and high-precision detection, so developing surface defect detection methods based on deep learning is of great significance for strip production. In order to effectively improve the accuracy of the deep learning model in detecting surface defects on hot-rolled strip, in this work we propose a real-time detection model for surface defects on strip steel based on the YOLOv8n model. Firstly, the newly convolutional layer Con5v is designed to replace the original convolutional layer in the neck, and an attention mechanism is added in front of each Con5v to improve the algorithm's ability to extract small target information. Secondly, an additional set of upsampled feature extraction units is added to the neck in order to enhance the spatial information of the feature map. Subsequently, a set of feature fusion units is incorporated and the convolutional layers in it are improved to provide better feature maps. Thirdly, the number of decoupling detection heads is increased to receive more high-quality features. The final experimental results show that YOLOv8n-GAM (YOLOv8 Nano Model with Global Attention Mechanism) achieves 81.4mAP and 82.0FPS on the NEU-DET dataset and 71.2mAP and 55.0FPS on the GC10-DET dataset, which are 5.7% and 6.9% higher than those of YOLOv8n, respectively. The model proposed in this paper achieves a comprehensive performance improvement in strip steel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttttt发布了新的文献求助10
2秒前
Jasper应助Gen_cexon采纳,获得10
2秒前
英勇雅琴完成签到,获得积分10
3秒前
粗心的雪青完成签到,获得积分10
3秒前
vicky完成签到,获得积分10
4秒前
4秒前
张佳明发布了新的文献求助10
4秒前
4秒前
羊羊羊发布了新的文献求助10
4秒前
katu发布了新的文献求助10
5秒前
余鱼鱼完成签到,获得积分10
5秒前
糊涂的大象完成签到,获得积分10
6秒前
6秒前
6秒前
儒雅的斑马完成签到,获得积分10
6秒前
科研通AI2S应助布布采纳,获得10
7秒前
充电宝应助羊羊羊采纳,获得10
8秒前
萤火发布了新的文献求助50
8秒前
9秒前
9秒前
田様应助nancy吴采纳,获得10
12秒前
12秒前
12秒前
13秒前
Z.one发布了新的文献求助10
13秒前
15秒前
秋风过耳完成签到,获得积分10
15秒前
15秒前
体贴不悔发布了新的文献求助10
15秒前
16秒前
汉堡包应助ZX采纳,获得10
16秒前
青青子衿发布了新的文献求助10
16秒前
17秒前
青春梦完成签到 ,获得积分10
17秒前
18秒前
xww发布了新的文献求助10
19秒前
哈哈哈发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260841
求助须知:如何正确求助?哪些是违规求助? 2901913
关于积分的说明 8318187
捐赠科研通 2571677
什么是DOI,文献DOI怎么找? 1397150
科研通“疑难数据库(出版商)”最低求助积分说明 653663
邀请新用户注册赠送积分活动 632213