YOLOv8n-GAM : an improved surface defect detection network for hot-rolled strip steel

材料科学 热轧 冶金
作者
Huanwei Xu,Xianghui Xiao,Zewei Zhao,Zhonglai Wang
出处
期刊:Engineering research express [IOP Publishing]
标识
DOI:10.1088/2631-8695/ad5417
摘要

Abstract Production defects caused by irresistible factors such as process design problems or differences in steel properties in strip production affect the economic benefits of the enterprise and threaten production safety. Traditional defect detection methods are difficult to achieve real-time and high-precision detection, so developing surface defect detection methods based on deep learning is of great significance for strip production. In order to effectively improve the accuracy of the deep learning model in detecting surface defects on hot-rolled strip, in this work we propose a real-time detection model for surface defects on strip steel based on the YOLOv8n model. Firstly, the newly convolutional layer Con5v is designed to replace the original convolutional layer in the neck, and an attention mechanism is added in front of each Con5v to improve the algorithm's ability to extract small target information. Secondly, an additional set of upsampled feature extraction units is added to the neck in order to enhance the spatial information of the feature map. Subsequently, a set of feature fusion units is incorporated and the convolutional layers in it are improved to provide better feature maps. Thirdly, the number of decoupling detection heads is increased to receive more high-quality features. The final experimental results show that YOLOv8n-GAM (YOLOv8 Nano Model with Global Attention Mechanism) achieves 81.4mAP and 82.0FPS on the NEU-DET dataset and 71.2mAP and 55.0FPS on the GC10-DET dataset, which are 5.7% and 6.9% higher than those of YOLOv8n, respectively. The model proposed in this paper achieves a comprehensive performance improvement in strip steel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草莓奶冻完成签到,获得积分10
刚刚
852应助大能猫采纳,获得10
1秒前
煜琪发布了新的文献求助10
1秒前
Gin完成签到,获得积分20
2秒前
2秒前
3秒前
lysixsixsix发布了新的文献求助10
3秒前
5秒前
Lucas应助hhh采纳,获得10
5秒前
riotzoov完成签到,获得积分10
5秒前
kai完成签到,获得积分10
5秒前
6秒前
菲噗噗发布了新的文献求助10
6秒前
久旱逢甘霖完成签到 ,获得积分10
7秒前
7秒前
Zz完成签到 ,获得积分10
7秒前
8秒前
LeoYiS214发布了新的文献求助10
8秒前
小马的可爱老婆完成签到,获得积分10
8秒前
温柔的刀完成签到,获得积分10
8秒前
刘旭完成签到,获得积分10
8秒前
小豹子发布了新的文献求助10
9秒前
9秒前
千跃发布了新的文献求助10
9秒前
zzw发布了新的文献求助20
10秒前
榴莲酥不要榴莲完成签到,获得积分10
10秒前
可爱的函函应助swetcol采纳,获得10
10秒前
李某某完成签到,获得积分10
10秒前
11秒前
lysixsixsix完成签到,获得积分10
11秒前
嗄巧发布了新的文献求助10
11秒前
mc1220发布了新的文献求助30
12秒前
nlm发布了新的文献求助10
12秒前
12秒前
思源应助毛益聪采纳,获得10
12秒前
wj发布了新的文献求助10
12秒前
12秒前
tyx发布了新的文献求助10
12秒前
ding应助青青草采纳,获得10
13秒前
glimmen完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110