Fabrication of lignocellulose/liquid metal-based conductive eutectic hydrogel composite for strain sensors

共晶体系 复合数 制作 材料科学 液态金属 导电体 拉伤 金属 复合材料 化学工程 纳米技术 冶金 合金 工程类 医学 替代医学 病理 内科学
作者
Dongping Zhao,Lei Wang,Kaili Fang,Jing Luo,Xin Zhou,Kankan Jiang
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:273: 133013-133013 被引量:7
标识
DOI:10.1016/j.ijbiomac.2024.133013
摘要

High conductive and freeze-resistant hydrogels with adhesion function are ideal candidates for soft electronic devices. However, it remains a challenge to design appropriate conductive nanofillers to endow hydrogels with all these characteristics. Liquid metal (LM) exhibits exceptional electrical conductivity and convenient processability, rendering it a highly promising contender. Cellulose nanofibrils (CNFs) were employed as the interfacial stabilizer in synthesizing stable CNFs encapsulated LM solutions. Then the lignin was further coated on the surface of CNFs-LM (LCL) to prepare lignin-coated hybrid hydrogels. The obtained LCL displayed outstanding water-dispersible stability and were promising conductive nanofillers for hydrogels. During the fabrication of poly N-(hydroxymethyl) acrylamide (PHA) hydrogels, the LM was dispersed into LM particles with smaller sizes, leading to highly conductive LCL-PHA hydrogels (0.38 S·m−1). The prepared LCL-PHA hydrogels exhibited exceptional mechanical properties, including a strain at a break of 134.6 %, stress at a break of 22.7 Kpa, and a toughness of 16.3 KJ·m−3. Additionally, the LCL-PHA hydrogels demonstrated favorable electrical conductivity and adhesion. Notably, even after being subjected to freezing at −20 °C for 24 h, they remained suitable for effective real-time monitoring of all types of human activities, demonstrating superior environmental stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
buno应助88采纳,获得10
1秒前
2秒前
三千世界完成签到,获得积分10
2秒前
2秒前
愉快的访旋完成签到,获得积分10
3秒前
Alpha完成签到,获得积分10
4秒前
大大发布了新的文献求助30
4秒前
翠翠发布了新的文献求助10
5秒前
半山发布了新的文献求助10
6秒前
6秒前
天天快乐应助CO2采纳,获得10
6秒前
隐形曼青应助junzilan采纳,获得10
7秒前
Dksido发布了新的文献求助10
7秒前
8秒前
思源应助卓哥采纳,获得10
8秒前
mysci完成签到,获得积分10
11秒前
12秒前
Quzhengkai发布了新的文献求助10
13秒前
13秒前
14秒前
落寞晓灵完成签到,获得积分10
14秒前
ORAzzz应助翠翠采纳,获得20
15秒前
zoe完成签到,获得积分10
15秒前
习习应助学术小白采纳,获得10
15秒前
16秒前
17秒前
tianny关注了科研通微信公众号
18秒前
18秒前
CO2发布了新的文献求助10
18秒前
桐桐应助zhangscience采纳,获得10
19秒前
求助发布了新的文献求助10
20秒前
buno应助zoe采纳,获得10
21秒前
junzilan发布了新的文献求助10
21秒前
21秒前
细品岁月完成签到 ,获得积分10
21秒前
细心书蕾完成签到 ,获得积分10
22秒前
无花果应助l11x29采纳,获得10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808