Information-enhanced deep graph clustering network

计算机科学 聚类分析 图形 人工智能 聚类系数 数据挖掘 理论计算机科学
作者
Hongtao Liu,Jiahao Wei,Yiming Wu,Cong Liang
出处
期刊:Neurocomputing [Elsevier]
卷期号:597: 127992-127992
标识
DOI:10.1016/j.neucom.2024.127992
摘要

Graph clustering is a significant task in complex network research. Deep graph clustering aims to uncover the potential community structure in graph data using the powerful feature extraction capability of deep learning, garnering much attention in recent decades. However, existing graph clustering methods fall short in fully utilizing available information, particularly in effectively fusing structural and attribute information, as well as utilizing coarse-grained data. Consequently, learned node representations remain limited, leading to suboptimal clustering results. To address these challenges, we propose Information-Enhanced Deep Graph Clustering Network (IEDGCN) for unsupervised attribute graphs. IEDGCN introduces key components to enhance information utilization and improve clustering performance. Firstly, we design a new higher-order neighborhood-weighted attribute matrix, effectively integrating higher-order neighborhood information with attributes. Secondly, a graph generation model guides the learning of the structural feature space more effectively. Additionally, IEDGCN captures more coarse-grained information by utilizing community and higher-order neighborhood features to refine clustering results. Finally, the proposed method is uniformly guided through a jointly supervised strategy for representation learning and cluster assignment. Experimental results on different benchmark datasets demonstrate the effectiveness of IEDGCN compared to state-of-the-art methods, emphasizing the importance of information enhancement for graph clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
gem完成签到 ,获得积分10
1秒前
susu1019完成签到,获得积分10
2秒前
hy发布了新的文献求助10
2秒前
ding发布了新的文献求助10
3秒前
3秒前
AAA气囊供应商完成签到,获得积分10
4秒前
xxfsx应助辛子采纳,获得10
5秒前
独白完成签到 ,获得积分10
6秒前
神券胀得难受完成签到,获得积分10
6秒前
7秒前
852应助木子采纳,获得10
7秒前
小青年儿完成签到 ,获得积分10
7秒前
8秒前
Ing完成签到,获得积分10
10秒前
智守奇安完成签到,获得积分10
11秒前
12秒前
田様应助东白湖的无奈采纳,获得10
12秒前
科研通AI6应助ding采纳,获得10
12秒前
大七发布了新的文献求助10
13秒前
研友_Z6Gm58完成签到 ,获得积分10
13秒前
追寻绮玉发布了新的文献求助10
13秒前
huihui完成签到 ,获得积分10
14秒前
14秒前
脑洞疼应助周周采纳,获得20
15秒前
大个应助周周采纳,获得20
15秒前
爆米花应助周周采纳,获得20
15秒前
共享精神应助周周采纳,获得20
15秒前
JamesPei应助周周采纳,获得20
16秒前
斯文败类应助周周采纳,获得20
16秒前
赘婿应助周周采纳,获得20
16秒前
Fsy应助周周采纳,获得30
16秒前
Gellisa应助周周采纳,获得20
16秒前
慕青应助周周采纳,获得20
16秒前
17秒前
17秒前
王柯完成签到 ,获得积分10
17秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271518
求助须知:如何正确求助?哪些是违规求助? 4429192
关于积分的说明 13787815
捐赠科研通 4307460
什么是DOI,文献DOI怎么找? 2363567
邀请新用户注册赠送积分活动 1359231
关于科研通互助平台的介绍 1322167