计算机科学
聚类分析
图形
人工智能
聚类系数
数据挖掘
理论计算机科学
作者
Hongtao Liu,Jiahao Wei,Yiming Wu,Cong Liang
标识
DOI:10.1016/j.neucom.2024.127992
摘要
Graph clustering is a significant task in complex network research. Deep graph clustering aims to uncover the potential community structure in graph data using the powerful feature extraction capability of deep learning, garnering much attention in recent decades. However, existing graph clustering methods fall short in fully utilizing available information, particularly in effectively fusing structural and attribute information, as well as utilizing coarse-grained data. Consequently, learned node representations remain limited, leading to suboptimal clustering results. To address these challenges, we propose Information-Enhanced Deep Graph Clustering Network (IEDGCN) for unsupervised attribute graphs. IEDGCN introduces key components to enhance information utilization and improve clustering performance. Firstly, we design a new higher-order neighborhood-weighted attribute matrix, effectively integrating higher-order neighborhood information with attributes. Secondly, a graph generation model guides the learning of the structural feature space more effectively. Additionally, IEDGCN captures more coarse-grained information by utilizing community and higher-order neighborhood features to refine clustering results. Finally, the proposed method is uniformly guided through a jointly supervised strategy for representation learning and cluster assignment. Experimental results on different benchmark datasets demonstrate the effectiveness of IEDGCN compared to state-of-the-art methods, emphasizing the importance of information enhancement for graph clustering.
科研通智能强力驱动
Strongly Powered by AbleSci AI