Information-enhanced deep graph clustering network

计算机科学 聚类分析 图形 人工智能 聚类系数 数据挖掘 理论计算机科学
作者
Hongtao Liu,Jiahao Wei,Yiming Wu,Cong Liang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:597: 127992-127992
标识
DOI:10.1016/j.neucom.2024.127992
摘要

Graph clustering is a significant task in complex network research. Deep graph clustering aims to uncover the potential community structure in graph data using the powerful feature extraction capability of deep learning, garnering much attention in recent decades. However, existing graph clustering methods fall short in fully utilizing available information, particularly in effectively fusing structural and attribute information, as well as utilizing coarse-grained data. Consequently, learned node representations remain limited, leading to suboptimal clustering results. To address these challenges, we propose Information-Enhanced Deep Graph Clustering Network (IEDGCN) for unsupervised attribute graphs. IEDGCN introduces key components to enhance information utilization and improve clustering performance. Firstly, we design a new higher-order neighborhood-weighted attribute matrix, effectively integrating higher-order neighborhood information with attributes. Secondly, a graph generation model guides the learning of the structural feature space more effectively. Additionally, IEDGCN captures more coarse-grained information by utilizing community and higher-order neighborhood features to refine clustering results. Finally, the proposed method is uniformly guided through a jointly supervised strategy for representation learning and cluster assignment. Experimental results on different benchmark datasets demonstrate the effectiveness of IEDGCN compared to state-of-the-art methods, emphasizing the importance of information enhancement for graph clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
南楼归雁完成签到,获得积分10
1秒前
小蘑菇应助hehe24856采纳,获得10
1秒前
tectextey完成签到,获得积分10
2秒前
hhan完成签到 ,获得积分10
2秒前
在水一方应助快乐搞钱hh采纳,获得10
3秒前
科研通AI5应助Shahid采纳,获得10
3秒前
3秒前
小伊发布了新的文献求助10
3秒前
欢喜的保温杯完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
赵永斌完成签到,获得积分20
4秒前
5秒前
Hello应助想早点退休采纳,获得10
5秒前
wenran雪发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
一位名圆完成签到,获得积分10
6秒前
7秒前
7秒前
Owen应助青青采纳,获得10
7秒前
搜集达人应助土豆淀粉采纳,获得10
7秒前
8秒前
科研通AI2S应助小蚊子采纳,获得10
8秒前
8秒前
上官若男应助王哪跑12采纳,获得10
8秒前
CodeCraft应助yangcong采纳,获得10
8秒前
gwentea发布了新的文献求助10
9秒前
9秒前
暖暖发布了新的文献求助10
9秒前
Jessekwok完成签到,获得积分10
10秒前
10秒前
10秒前
赵永斌发布了新的文献求助10
10秒前
lily000完成签到,获得积分10
10秒前
脑洞疼应助wyx采纳,获得10
10秒前
毛绒绒窝铺完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403