亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Risk prediction model of metabolic syndrome in perimenopausal women based on machine learning

代谢综合征 腰围 计算机科学 血压 逻辑回归 机器学习 2型糖尿病 接收机工作特性 多层感知器 医学 糖尿病 人口学 体质指数 内分泌学 内科学 肥胖 社会学 人工神经网络
作者
Xiaoxue Wang,Zijun Wang,Chen Shichen,Mukun Yang,Yi Chen,Miao Linqing,Wenpei Bai
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:188: 105480-105480 被引量:2
标识
DOI:10.1016/j.ijmedinf.2024.105480
摘要

Metabolic syndrome (MetS) is considered to be an important parameter of cardio-metabolic health and contributing to the development of atherosclerosis, type 2 diabetes. The incidence of MetS significantly increases in postmenopausal women, therefore, the perimenopausal period is considered a critical phase for prevention. We aimed to use four machine learning methods to predict whether perimenopausal women will develop MetS within 2 years. Women aged 45–55 years who underwent 2 consecutive years of physical examinations in Ninth Clinical College of Peking University between January 2021 and December 2022 were included. We extracted 26 features from physical examinations, and used backward selection method to select top 10 features with the largest area under the receiver operating characteristic curve (AUC). Extreme gradient boosting (XGBoost), Random forest (RF), Multilayer perceptron (MLP) and Logistic regression (LR) were used to establish the model. Those performance were measured by AUC, accuracy, precision, recall and F1 score. SHapley Additive exPlanation (SHAP) value was used to identify risk factors affecting perimenopausal MetS. A total of 8700 women had physical examination records, and 2,254 women finally met the inclusion criteria. For predicting MetS events, RF and XGBoost had the highest AUC (0.96, 0.95, respectively). XGBoost has the highest F1 value (F1 = 0.77), followed by RF, LR and MLP. SHAP value suggested that the top 5 variables affecting MetS in this study were Waist circumference, Fasting blood glucose, High-density lipoprotein cholesterol, Triglycerides and Diastolic blood pressure, respectively. We've developed a targeted MetS risk prediction model for perimenopausal women, using health examination data. This model enables early identification of high MetS risk in this group, offering significant benefits for individual health management and wider socio-economic health initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
竹夕完成签到 ,获得积分10
8秒前
矢思然完成签到,获得积分10
9秒前
玛琳卡迪马完成签到,获得积分10
29秒前
嗯哼应助yoyo采纳,获得20
44秒前
科目三应助zxcvb666采纳,获得10
1分钟前
科研通AI2S应助zxcvb666采纳,获得80
1分钟前
1分钟前
blm发布了新的文献求助10
1分钟前
小二郎应助blm采纳,获得10
2分钟前
无花果应助三点水采纳,获得10
3分钟前
3分钟前
三点水发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
善学以致用应助三点水采纳,获得10
4分钟前
4分钟前
百里幻竹发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
sniffgo完成签到 ,获得积分10
5分钟前
LioXH发布了新的文献求助10
7分钟前
LioXH完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
chiyudoubao完成签到,获得积分10
8分钟前
8分钟前
9分钟前
情怀应助五香采纳,获得10
9分钟前
五香完成签到,获得积分10
10分钟前
10分钟前
五香发布了新的文献求助10
10分钟前
10分钟前
ll77完成签到,获得积分10
11分钟前
科研通AI2S应助科研通管家采纳,获得30
12分钟前
12分钟前
12分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505225
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867