Wellbore salt-deposition risk prediction of underground gas storage combining numerical modeling and machine learning methodology

井筒 沉积(地质) 石油工程 盐(化学) 环境科学 计算机科学 机器学习 工艺工程 工程类 地质学 化学 沉积物 古生物学 物理化学
作者
Zhi-Yue He,Yong Tang,Youwei He,Jiazheng Qin,Shilai Hu,Bicheng Yan,Liangrui Tang,Kamy Sepehrnoori,Zhenhua Rui
出处
期刊:Energy [Elsevier]
卷期号:305: 132247-132247
标识
DOI:10.1016/j.energy.2024.132247
摘要

Strengthening the construction of underground gas storage (UGS) is significant for securing national energy and achieving carbon neutrality. However, salt deposition occurs in the wellbore affecting the safety of UGS seriously. How to predict the salt-deposition risk in UGS wells accurately and quickly is still challenging. This work aims at establishing a fast and convenient framework of wellbore salt-deposition risk prediction in UGS wells. Firstly, the influence of the production parameters on wellbore salt-deposition is analyzed by an in-house simulator. Further, an intelligent diagnostic model of salt-deposition risk is proposed based on the machine learning algorithm. The effect of salt deposition on reservoir is analyzed by reservoir salt-deposition simulation model. Finally, downhole video survey is used to validate the modeling accuracy of diagnostic model. Results indicate that the contribution ratio of daily gas production and water-gas-ratio to wellbore salt deposition is 3:2. After the salt deposition, the reduction in water saturation and permeability of the near wellbore areas are 77.14 % and 98.91 %. The modeling accuracy of diagnostic model is 97 %, which is applied in the Y UGS successfully. The proposed framework can predict the salt-deposition risk of UGS wells in real time to help engineers control salt clogging issues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
归尘应助sunburst采纳,获得30
1秒前
哚圆圆完成签到,获得积分20
1秒前
mraze发布了新的文献求助10
2秒前
深情安青应助圣诞节采纳,获得10
2秒前
2秒前
paobashan发布了新的文献求助30
3秒前
虚幻唯雪完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
哚圆圆发布了新的文献求助10
4秒前
5秒前
tianquanbi发布了新的文献求助10
5秒前
李爱国应助eywct采纳,获得10
5秒前
6秒前
6秒前
CipherSage应助熊国开采纳,获得10
6秒前
Sweet完成签到 ,获得积分10
6秒前
gzslwddhjx发布了新的文献求助10
7秒前
Islet发布了新的文献求助10
7秒前
8秒前
8秒前
李爱国应助王雪儿哈哈哈采纳,获得10
9秒前
SciGPT应助llll采纳,获得10
9秒前
11秒前
11秒前
11秒前
11秒前
晚上吃什么完成签到,获得积分10
11秒前
ChemMa发布了新的文献求助10
12秒前
丫丫发布了新的文献求助10
12秒前
易安发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
笨笨忘幽发布了新的文献求助10
14秒前
窦文涛完成签到,获得积分10
14秒前
14秒前
完美世界应助liuying采纳,获得10
15秒前
16秒前
THJJ完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300