Progress of GaN-based E-mode HEMTs

模式(计算机接口) 光电子学 材料科学 高电子迁移率晶体管 工程物理 计算机科学 电气工程 晶体管 物理 工程类 电压 人机交互
作者
Huolin Huang,Yun Lei,Nan Sun
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:57 (41): 413002-413002 被引量:16
标识
DOI:10.1088/1361-6463/ad5dc9
摘要

Abstract With the continuous improvement of the power density and operating frequency in power conversion systems, it is necessary to develop the new power electronic products with better performances than the conventional semiconductors. As a typical representative of the wide-bandgap semiconductors, gallium nitride (GaN)-based heterostructure has unique high-density two-dimensional electron gas (2DEG) and hence can be used to fabricate the fast high electron mobility transistors (HEMTs) with low power loss. Therefore, it is considered as a promising candidate for the next-generation power devices to improve the switching efficiency and speed. Compared with the depletion mode (D-mode, also known as normally-on) devices, the enhancement-mode (E-mode, also known as normally-off) devices have the advantages of safety, energy-saving, and better circuit topology design, making them more attractive for industry applications. In this paper, the different structure schemes and fabrication technologies of the GaN-based E-mode HEMTs are reviewed and summarized. Their technical characteristics are systematically compared. The influences of material epitaxial structure, ohmic contact, material etching, field plate design, and passivation process on the device performances are discussed in detail wherein the fabrication process of the recessed-gate MIS-HEMTs are emphatically illustrated, focusing on the interface treatment technology and dielectric engineering. In addition, the complicated reliability issues in the E-mode HEMTs induced by high temperature, high voltage, and high frequency switching and corresponding physical mechanisms are introduced and discussed. Finally, the potential technical solutions are proposed and the future application fields of GaN-based E-mode HEMTs are prospected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助Grace采纳,获得10
1秒前
gyh发布了新的文献求助10
1秒前
hijuddy完成签到,获得积分20
1秒前
Qi半仙完成签到,获得积分10
1秒前
meltconstraint完成签到,获得积分10
2秒前
赵凯完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
欢喜昊焱发布了新的文献求助10
2秒前
xx发布了新的文献求助10
3秒前
Nann完成签到 ,获得积分10
4秒前
5秒前
烟花应助随想采纳,获得10
6秒前
liyuxuan完成签到,获得积分10
6秒前
十一点二十八分完成签到 ,获得积分10
6秒前
香蕉觅云应助hijuddy采纳,获得30
7秒前
无限白羊发布了新的文献求助10
7秒前
7秒前
8秒前
笨笨易绿发布了新的文献求助10
8秒前
8秒前
Navial30发布了新的文献求助10
8秒前
唐咩咩咩完成签到,获得积分10
9秒前
快乐疯样完成签到,获得积分10
10秒前
bru发布了新的文献求助10
10秒前
10秒前
10秒前
LJQ发布了新的文献求助10
11秒前
11秒前
叫滚滚发布了新的文献求助10
11秒前
LJ程励完成签到 ,获得积分10
11秒前
欢喜昊焱完成签到,获得积分10
12秒前
12秒前
Isla完成签到,获得积分10
13秒前
希望天下0贩的0应助钰L采纳,获得10
13秒前
13秒前
Lucas应助xx采纳,获得10
14秒前
rzy66发布了新的文献求助10
14秒前
小王发布了新的文献求助10
14秒前
慕青应助无限白羊采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480228
求助须知:如何正确求助?哪些是违规求助? 4581437
关于积分的说明 14380635
捐赠科研通 4510045
什么是DOI,文献DOI怎么找? 2471647
邀请新用户注册赠送积分活动 1458035
关于科研通互助平台的介绍 1431786