A Radiological-Radiomics model for differentiation between minimally invasive adenocarcinoma and invasive adenocarcinoma less than or equal to 3 cm: A two-center retrospective study

医学 接收机工作特性 腺癌 无线电技术 逻辑回归 曲线下面积 放射性武器 放射科 核医学 回顾性队列研究 病理 内科学 癌症
作者
Dong Hao,Yuzhen Xi,Kai Liu,Lei Chen,Yang Li,Xianpan Pan,Xingwei Zhang,Xiaodan Ye,Zhongxiang Ding
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:176: 111532-111532 被引量:2
标识
DOI:10.1016/j.ejrad.2024.111532
摘要

ObjectiveTo develop a Radiological-Radiomics (R-R) combined model for differentiation between minimal invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IA) of lung adenocarcinoma (LUAD) and evaluate its predictive performance.MethodsThe clinical, pathological, and imaging data of a total of 509 patients (522 lesions) with LUAD diagnosed by surgical pathology from 2 medical centres were retrospectively collected, with 392 patients (402 lesions) from center 1 trained and validated using a five-fold cross-validation method, and 117 patients (120 lesions) from center 2 serving as an independent external test set. The least absolute shrinkage and selection operator (LASSO) method was utilized to filter features. Logistic regression was used to construct three models for predicting IA, namely, Radiological model, Radiomics model, and R-R model. Also, receiver operating curve curves (ROCs) were plotted, generating corresponding area under the curve (AUC), sensitivity, specificity, and accuracy.ResultsThe R-R model for IA prediction achieved an AUC of 0.918 (95 % CI: 0.889–0.947), a sensitivity of 80.3 %, a specificity of 88.2 %, and an accuracy of 82.1 % in the training set. In the validation set, this model exhibited an AUC of 0.906 (95 % CI: 0.842–0.970), a sensitivity of 79.9 %, a specificity of 88.1 %, and an accuracy of 81.8 %. In the external test set, the AUC was 0.894 (95 % CI: 0.824–0.964), a sensitivity of 84.8 %, a specificity of 78.6 %, and an accuracy of 83.3 %.ConclusionThe R-R model showed excellent diagnostic performance in differentiating MIA and IA, which can provide a certain reference for clinical diagnosis and surgical treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饶渔发布了新的文献求助10
刚刚
wang1发布了新的文献求助10
刚刚
诚心访琴发布了新的文献求助30
1秒前
脑洞疼应助ling采纳,获得10
2秒前
4秒前
今后应助SUKAAAA采纳,获得10
5秒前
5秒前
yangsi完成签到,获得积分10
5秒前
5秒前
6秒前
Xxjj完成签到,获得积分10
7秒前
6666完成签到,获得积分10
8秒前
8秒前
9秒前
科研通AI6应助yumiao采纳,获得10
9秒前
10秒前
10秒前
cacaca完成签到,获得积分10
11秒前
Mikey_Teng发布了新的文献求助10
11秒前
风清扬发布了新的文献求助30
11秒前
JamesPei应助葛利斯581G采纳,获得10
12秒前
小马甲应助Joshua采纳,获得10
12秒前
12秒前
MaskRuin完成签到,获得积分10
13秒前
lance发布了新的文献求助10
13秒前
kun完成签到 ,获得积分10
14秒前
14秒前
xxfsx发布了新的文献求助10
15秒前
15秒前
15秒前
研友_VZG7GZ应助辣椒采纳,获得10
15秒前
月亮发布了新的文献求助10
16秒前
ZQQ完成签到 ,获得积分10
17秒前
17秒前
17秒前
ling发布了新的文献求助10
18秒前
杨佳莉完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133034
求助须知:如何正确求助?哪些是违规求助? 4334358
关于积分的说明 13503569
捐赠科研通 4171281
什么是DOI,文献DOI怎么找? 2287061
邀请新用户注册赠送积分活动 1287947
关于科研通互助平台的介绍 1228783