Exploring the implementation feasibility of the sol-char sanitation system using machine learning and life cycle assessment

卫生 情景分析 生命周期评估 环境经济学 基线(sea) 环境科学 工程类 环境规划 环境工程 业务 生产(经济) 经济 宏观经济学 海洋学 财务 地质学
作者
Justin Z. Lian,N. Monish Sai,Luiza C. Campos,Richard P. Fisher,Karl G. Linden,Stefano Cucurachi
出处
期刊:Resources Conservation and Recycling [Elsevier]
卷期号:209: 107784-107784
标识
DOI:10.1016/j.resconrec.2024.107784
摘要

Globally, 1.5 billion people still lacked access to safe sanitation facilities in 2022, which exacerbated health risks and environmental degradation. To address this, we created the Sol-Char sanitation system, a potential solution for expanding secure sanitation alternatives. This study aimed to develop a machine learning model that could evaluate the viability of implementing the Sol-Char system in 76 countries with high rates of open defecation in 2022. Using the Random Forest model, we identified suitable locations considering factors such as solar energy availability and economic feasibility. The model successfully identified 42 countries (55 %), mainly in Sub-Saharan Africa and South Asia, as appropriate candidates for implementing the system. In addition, a framework was developed to guide solar technology suitability prediction using our machine learning model. Furthermore, we conducted an ex-ante life cycle assessment (LCA) study to evaluate the environmental impacts across different implementation scenarios. The baseline scenario (Scenario 1) produced the least emissions, with 299 kg CO2-eq. In contrast, the scenario (Scenario 2) involving international transportation had the highest emissions at 395 kg CO2-eq (32 % higher), while the localized scenario (Scenario 3) landed in between with 337 kg CO2-eq emissions. The LCA and contribution analysis highlighted that optimizing materials and design was essential to reduce emissions across these scenarios. Local manufacturing, particularly in high-transportation scenarios like Scenario 2, could reduce emissions from logistics but required careful consideration of local resources and energy structures, as demonstrated in Scenario 3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
2秒前
叶财财发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
不呐呐发布了新的文献求助30
4秒前
ding应助enen采纳,获得10
5秒前
5秒前
陈晓旭发布了新的文献求助10
5秒前
东东发布了新的文献求助10
5秒前
SciGPT应助emilybei采纳,获得10
6秒前
刚国忠发布了新的文献求助10
6秒前
叶财财完成签到,获得积分10
7秒前
Xu发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
zyfzyf完成签到,获得积分10
7秒前
科研通AI6应助川川采纳,获得10
8秒前
8秒前
科研通AI6应助火火木采纳,获得30
9秒前
will完成签到,获得积分10
9秒前
Hello应助小田睡不醒采纳,获得10
9秒前
9秒前
香蕉觅云应助荒野风采纳,获得10
9秒前
10秒前
10秒前
阳光发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
孔踏歌完成签到,获得积分10
12秒前
12秒前
Tingting完成签到 ,获得积分10
12秒前
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781