Exploring the implementation feasibility of the sol-char sanitation system using machine learning and life cycle assessment

卫生 情景分析 生命周期评估 环境经济学 基线(sea) 环境科学 工程类 环境规划 环境工程 业务 生产(经济) 经济 财务 海洋学 地质学 宏观经济学
作者
Justin Z. Lian,N. Monish Sai,Luiza C. Campos,Richard P. Fisher,Karl G. Linden,Stefano Cucurachi
出处
期刊:Resources Conservation and Recycling [Elsevier]
卷期号:209: 107784-107784
标识
DOI:10.1016/j.resconrec.2024.107784
摘要

Globally, 1.5 billion people still lacked access to safe sanitation facilities in 2022, which exacerbated health risks and environmental degradation. To address this, we created the Sol-Char sanitation system, a potential solution for expanding secure sanitation alternatives. This study aimed to develop a machine learning model that could evaluate the viability of implementing the Sol-Char system in 76 countries with high rates of open defecation in 2022. Using the Random Forest model, we identified suitable locations considering factors such as solar energy availability and economic feasibility. The model successfully identified 42 countries (55 %), mainly in Sub-Saharan Africa and South Asia, as appropriate candidates for implementing the system. In addition, a framework was developed to guide solar technology suitability prediction using our machine learning model. Furthermore, we conducted an ex-ante life cycle assessment (LCA) study to evaluate the environmental impacts across different implementation scenarios. The baseline scenario (Scenario 1) produced the least emissions, with 299 kg CO2-eq. In contrast, the scenario (Scenario 2) involving international transportation had the highest emissions at 395 kg CO2-eq (32 % higher), while the localized scenario (Scenario 3) landed in between with 337 kg CO2-eq emissions. The LCA and contribution analysis highlighted that optimizing materials and design was essential to reduce emissions across these scenarios. Local manufacturing, particularly in high-transportation scenarios like Scenario 2, could reduce emissions from logistics but required careful consideration of local resources and energy structures, as demonstrated in Scenario 3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得100
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
qingmoheng应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
小梁完成签到,获得积分10
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
慕青应助科研通管家采纳,获得10
2秒前
qingmoheng应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
虞美人完成签到,获得积分10
2秒前
852应助科研通管家采纳,获得50
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
充电宝应助yevaaaa采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
zyy发布了新的文献求助10
2秒前
平淡远航发布了新的文献求助10
3秒前
Stella发布了新的文献求助10
3秒前
humengli完成签到 ,获得积分10
3秒前
4秒前
chen01hang发布了新的文献求助30
4秒前
隐形曼青应助小梁采纳,获得10
5秒前
在dcfd关注了科研通微信公众号
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532074
求助须知:如何正确求助?哪些是违规求助? 4620885
关于积分的说明 14575515
捐赠科研通 4560631
什么是DOI,文献DOI怎么找? 2498949
邀请新用户注册赠送积分活动 1478926
关于科研通互助平台的介绍 1450179