Exploring the implementation feasibility of the sol-char sanitation system using machine learning and life cycle assessment

卫生 情景分析 生命周期评估 环境经济学 基线(sea) 环境科学 工程类 环境规划 环境工程 业务 生产(经济) 经济 财务 海洋学 地质学 宏观经济学
作者
Justin Z. Lian,N. Monish Sai,Luiza C. Campos,Richard P. Fisher,Karl G. Linden,Stefano Cucurachi
出处
期刊:Resources Conservation and Recycling [Elsevier BV]
卷期号:209: 107784-107784
标识
DOI:10.1016/j.resconrec.2024.107784
摘要

Globally, 1.5 billion people still lacked access to safe sanitation facilities in 2022, which exacerbated health risks and environmental degradation. To address this, we created the Sol-Char sanitation system, a potential solution for expanding secure sanitation alternatives. This study aimed to develop a machine learning model that could evaluate the viability of implementing the Sol-Char system in 76 countries with high rates of open defecation in 2022. Using the Random Forest model, we identified suitable locations considering factors such as solar energy availability and economic feasibility. The model successfully identified 42 countries (55 %), mainly in Sub-Saharan Africa and South Asia, as appropriate candidates for implementing the system. In addition, a framework was developed to guide solar technology suitability prediction using our machine learning model. Furthermore, we conducted an ex-ante life cycle assessment (LCA) study to evaluate the environmental impacts across different implementation scenarios. The baseline scenario (Scenario 1) produced the least emissions, with 299 kg CO2-eq. In contrast, the scenario (Scenario 2) involving international transportation had the highest emissions at 395 kg CO2-eq (32 % higher), while the localized scenario (Scenario 3) landed in between with 337 kg CO2-eq emissions. The LCA and contribution analysis highlighted that optimizing materials and design was essential to reduce emissions across these scenarios. Local manufacturing, particularly in high-transportation scenarios like Scenario 2, could reduce emissions from logistics but required careful consideration of local resources and energy structures, as demonstrated in Scenario 3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助慕洋采纳,获得10
刚刚
张先生2365完成签到,获得积分10
1秒前
小猪发布了新的文献求助10
2秒前
2秒前
领导范儿应助认真科研采纳,获得10
2秒前
动听的琴完成签到,获得积分10
2秒前
abai发布了新的文献求助10
3秒前
3秒前
AA完成签到,获得积分10
3秒前
yy发布了新的文献求助10
3秒前
usuila发布了新的文献求助10
5秒前
sxmt123456789发布了新的文献求助10
5秒前
5秒前
老迟到的秋完成签到,获得积分10
6秒前
8秒前
鲸落发布了新的文献求助30
9秒前
酒剑仙完成签到,获得积分10
9秒前
10秒前
王婧萱萱萱完成签到 ,获得积分10
10秒前
科研通AI5应助阿会采纳,获得10
10秒前
一一发布了新的文献求助10
10秒前
mk91完成签到,获得积分10
11秒前
ddc_0819发布了新的文献求助10
11秒前
苍白完成签到,获得积分10
12秒前
13秒前
qw发布了新的文献求助10
13秒前
科研通AI6应助慕洋采纳,获得10
14秒前
晴朗发布了新的文献求助10
14秒前
宝宝面条完成签到 ,获得积分10
15秒前
NeXt_best完成签到,获得积分0
16秒前
16秒前
16秒前
机智蜗牛完成签到,获得积分10
17秒前
18秒前
19秒前
宝宝面条关注了科研通微信公众号
19秒前
七七完成签到 ,获得积分10
19秒前
诚心茈完成签到,获得积分20
19秒前
机智蜗牛发布了新的文献求助10
21秒前
科研通AI6应助FOOL采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075278
求助须知:如何正确求助?哪些是违规求助? 4295158
关于积分的说明 13383568
捐赠科研通 4116817
什么是DOI,文献DOI怎么找? 2254505
邀请新用户注册赠送积分活动 1259126
关于科研通互助平台的介绍 1191907