Research on bearing fault diagnosis based on novel MRSVD-CWT and improved CNN-LSTM

方位(导航) 断层(地质) 人工智能 计算机科学 模式识别(心理学) 地震学 地质学
作者
Yuan Guo,Jun Zhou,Zhenbiao Dong,Huan She,Weijia Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 095003-095003 被引量:11
标识
DOI:10.1088/1361-6501/ad4fb3
摘要

Abstract As a critical component in mechanical equipment, rolling bearings play a vital role in industrial production. Effective bearing fault diagnosis provides a more reliable guarantee for the safe operation of the industrial output. Traditional data-driven bearing fault diagnosis methods often have problems such as insufficient fault feature extraction and poor model generalization capabilities, resulting in reduced diagnostic accuracy. To solve these problems and significantly improve the diagnosis accuracy, this paper proposes a novel fault diagnosis method based on multi-resolution singular value decomposition (MRSVD), continuous wavelet transform (CWT), improved convolutional neural network (CNN) enhanced by convolutional block attention module, and long short-term memory (LSTM). Through MRSVD, the vibration signal is decomposed layer by layer into multiple denoised signals, thus signal noise can be eliminated to the greatest extent to gain the optimal denoised signals; then through CWT, the optimal denoised signals are converted into two-dimensional time-frequency images so that the local and global characteristic information can be fully captured. Finally, through improved CNN-LSTM, feature extraction is greatly enhanced, resulting in high accuracy of fault diagnosis. Lots of experiments are organized to test the performance, and the experimental results show that the proposed method on various datasets has better diagnosis accuracy and generalization ability under different working conditions than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
figure完成签到 ,获得积分10
刚刚
echo完成签到,获得积分10
刚刚
不想太多发布了新的文献求助10
1秒前
1秒前
1秒前
和谐灯泡发布了新的文献求助10
1秒前
taotao完成签到,获得积分20
2秒前
MLL完成签到 ,获得积分10
2秒前
默默的傲云完成签到,获得积分10
2秒前
小满完成签到,获得积分10
2秒前
Owen应助谨慎的安柏采纳,获得10
2秒前
2秒前
朴实海亦完成签到,获得积分10
2秒前
Ada完成签到 ,获得积分10
2秒前
燕子完成签到,获得积分10
3秒前
青年才俊完成签到,获得积分10
3秒前
MF完成签到,获得积分10
3秒前
dagongren完成签到,获得积分10
3秒前
兔酱发布了新的文献求助10
4秒前
4秒前
4秒前
馥芮白完成签到,获得积分10
4秒前
czzlancer完成签到,获得积分10
6秒前
Whiaper发布了新的文献求助10
6秒前
儒雅完成签到 ,获得积分10
7秒前
7秒前
gaowei完成签到,获得积分10
7秒前
英勇的飞凤完成签到,获得积分20
8秒前
8秒前
温柔的尔芙完成签到,获得积分20
9秒前
9秒前
hhy完成签到,获得积分10
9秒前
longmad完成签到,获得积分10
9秒前
和谐的醉山完成签到,获得积分0
9秒前
噗噗完成签到,获得积分10
10秒前
10秒前
10秒前
坚定书竹完成签到 ,获得积分10
11秒前
波风水门pxf完成签到,获得积分10
11秒前
寻找组织应助taotao采纳,获得30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568403
求助须知:如何正确求助?哪些是违规求助? 4652961
关于积分的说明 14702698
捐赠科研通 4594773
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463735