Research on bearing fault diagnosis based on novel MRSVD-CWT and improved CNN-LSTM

方位(导航) 断层(地质) 人工智能 计算机科学 模式识别(心理学) 地震学 地质学
作者
Yuan Guo,Jun Zhou,Zhenbiao Dong,Huan She,Weijia Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 095003-095003 被引量:11
标识
DOI:10.1088/1361-6501/ad4fb3
摘要

Abstract As a critical component in mechanical equipment, rolling bearings play a vital role in industrial production. Effective bearing fault diagnosis provides a more reliable guarantee for the safe operation of the industrial output. Traditional data-driven bearing fault diagnosis methods often have problems such as insufficient fault feature extraction and poor model generalization capabilities, resulting in reduced diagnostic accuracy. To solve these problems and significantly improve the diagnosis accuracy, this paper proposes a novel fault diagnosis method based on multi-resolution singular value decomposition (MRSVD), continuous wavelet transform (CWT), improved convolutional neural network (CNN) enhanced by convolutional block attention module, and long short-term memory (LSTM). Through MRSVD, the vibration signal is decomposed layer by layer into multiple denoised signals, thus signal noise can be eliminated to the greatest extent to gain the optimal denoised signals; then through CWT, the optimal denoised signals are converted into two-dimensional time-frequency images so that the local and global characteristic information can be fully captured. Finally, through improved CNN-LSTM, feature extraction is greatly enhanced, resulting in high accuracy of fault diagnosis. Lots of experiments are organized to test the performance, and the experimental results show that the proposed method on various datasets has better diagnosis accuracy and generalization ability under different working conditions than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
鱼叮叮完成签到,获得积分10
1秒前
1秒前
123完成签到 ,获得积分10
2秒前
111发布了新的文献求助30
2秒前
Time完成签到,获得积分10
3秒前
3秒前
xin完成签到,获得积分10
3秒前
4秒前
平常紫安完成签到 ,获得积分10
5秒前
5秒前
yuanyuan完成签到,获得积分10
5秒前
李健的小迷弟应助李志采纳,获得10
6秒前
6秒前
暮商完成签到,获得积分10
6秒前
6秒前
7秒前
个性的荆发布了新的文献求助10
7秒前
稀饭完成签到,获得积分10
7秒前
9秒前
xxx关闭了xxx文献求助
9秒前
Hiker发布了新的文献求助10
10秒前
英姑应助俭朴奇异果采纳,获得10
11秒前
11秒前
11秒前
hui发布了新的文献求助10
11秒前
12秒前
12秒前
blue2021发布了新的文献求助30
13秒前
14秒前
14秒前
MWY发布了新的文献求助10
14秒前
胡33完成签到,获得积分10
14秒前
LihuaLu0417完成签到,获得积分20
15秒前
Zureil发布了新的文献求助30
15秒前
豆小芒发布了新的文献求助10
16秒前
17秒前
浮游应助EC采纳,获得10
17秒前
LihuaLu0417发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790