Research on bearing fault diagnosis based on novel MRSVD-CWT and improved CNN-LSTM

方位(导航) 断层(地质) 人工智能 计算机科学 模式识别(心理学) 地震学 地质学
作者
Yuan Guo,Jun Wen Zhou,Zhenbiao Dong,Huajun She,Weijia Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 095003-095003 被引量:1
标识
DOI:10.1088/1361-6501/ad4fb3
摘要

Abstract As a critical component in mechanical equipment, rolling bearings play a vital role in industrial production. Effective bearing fault diagnosis provides a more reliable guarantee for the safe operation of the industrial output. Traditional data-driven bearing fault diagnosis methods often have problems such as insufficient fault feature extraction and poor model generalization capabilities, resulting in reduced diagnostic accuracy. To solve these problems and significantly improve the diagnosis accuracy, this paper proposes a novel fault diagnosis method based on multi-resolution singular value decomposition (MRSVD), continuous wavelet transform (CWT), improved convolutional neural network (CNN) enhanced by convolutional block attention module, and long short-term memory (LSTM). Through MRSVD, the vibration signal is decomposed layer by layer into multiple denoised signals, thus signal noise can be eliminated to the greatest extent to gain the optimal denoised signals; then through CWT, the optimal denoised signals are converted into two-dimensional time-frequency images so that the local and global characteristic information can be fully captured. Finally, through improved CNN-LSTM, feature extraction is greatly enhanced, resulting in high accuracy of fault diagnosis. Lots of experiments are organized to test the performance, and the experimental results show that the proposed method on various datasets has better diagnosis accuracy and generalization ability under different working conditions than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
榕俊发布了新的文献求助10
刚刚
ding应助强风吹拂采纳,获得10
刚刚
刚刚
高兴星发布了新的文献求助10
1秒前
zzz完成签到,获得积分10
2秒前
xyrain发布了新的文献求助10
2秒前
竹坞听荷发布了新的文献求助10
3秒前
ufofly730发布了新的文献求助10
3秒前
shannian发布了新的文献求助10
4秒前
4秒前
BareBear完成签到,获得积分10
5秒前
6秒前
6秒前
zorro完成签到,获得积分10
6秒前
6秒前
开放访天发布了新的文献求助10
6秒前
8秒前
金贝壳er发布了新的文献求助10
8秒前
10秒前
CipherSage应助sk夏冰采纳,获得10
10秒前
万能图书馆应助乐园鸟采纳,获得10
10秒前
10秒前
平淡翎发布了新的文献求助10
11秒前
香蕉秃头jk完成签到,获得积分10
11秒前
Akim应助Kirin采纳,获得10
12秒前
萌称木李完成签到,获得积分10
12秒前
Yeah发布了新的文献求助10
13秒前
13秒前
14秒前
领导范儿应助zlh采纳,获得10
15秒前
李晨阳完成签到,获得积分10
15秒前
15秒前
小冯发布了新的文献求助10
16秒前
不配.应助雨诺采纳,获得20
16秒前
高高秋完成签到,获得积分10
18秒前
无私的珩完成签到,获得积分10
19秒前
19秒前
高兴星完成签到,获得积分10
20秒前
wangjing发布了新的文献求助10
21秒前
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153026
求助须知:如何正确求助?哪些是违规求助? 2804161
关于积分的说明 7857753
捐赠科研通 2461956
什么是DOI,文献DOI怎么找? 1310610
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794