清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Research on bearing fault diagnosis based on novel MRSVD-CWT and improved CNN-LSTM

方位(导航) 断层(地质) 人工智能 计算机科学 模式识别(心理学) 地震学 地质学
作者
Yuan Guo,Jun Zhou,Zhenbiao Dong,Huan She,Weijia Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 095003-095003 被引量:11
标识
DOI:10.1088/1361-6501/ad4fb3
摘要

Abstract As a critical component in mechanical equipment, rolling bearings play a vital role in industrial production. Effective bearing fault diagnosis provides a more reliable guarantee for the safe operation of the industrial output. Traditional data-driven bearing fault diagnosis methods often have problems such as insufficient fault feature extraction and poor model generalization capabilities, resulting in reduced diagnostic accuracy. To solve these problems and significantly improve the diagnosis accuracy, this paper proposes a novel fault diagnosis method based on multi-resolution singular value decomposition (MRSVD), continuous wavelet transform (CWT), improved convolutional neural network (CNN) enhanced by convolutional block attention module, and long short-term memory (LSTM). Through MRSVD, the vibration signal is decomposed layer by layer into multiple denoised signals, thus signal noise can be eliminated to the greatest extent to gain the optimal denoised signals; then through CWT, the optimal denoised signals are converted into two-dimensional time-frequency images so that the local and global characteristic information can be fully captured. Finally, through improved CNN-LSTM, feature extraction is greatly enhanced, resulting in high accuracy of fault diagnosis. Lots of experiments are organized to test the performance, and the experimental results show that the proposed method on various datasets has better diagnosis accuracy and generalization ability under different working conditions than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
20秒前
21秒前
27秒前
吃饱再睡完成签到 ,获得积分10
39秒前
39秒前
量子星尘发布了新的文献求助10
42秒前
酷酷的紫南完成签到 ,获得积分10
47秒前
51秒前
xue完成签到 ,获得积分10
54秒前
冰凌心恋完成签到,获得积分10
56秒前
1分钟前
www发布了新的文献求助10
1分钟前
hanlixuan完成签到 ,获得积分10
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
wanci应助john2333采纳,获得10
2分钟前
奋斗的小研完成签到,获得积分10
2分钟前
2分钟前
Jin完成签到,获得积分10
2分钟前
jin完成签到,获得积分10
2分钟前
2分钟前
aming发布了新的文献求助10
2分钟前
john2333关注了科研通微信公众号
3分钟前
3分钟前
melody完成签到 ,获得积分10
3分钟前
john2333发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
深情安青应助www采纳,获得10
3分钟前
Scheduling完成签到 ,获得积分10
3分钟前
bigtree完成签到 ,获得积分10
3分钟前
jyy应助科研通管家采纳,获得10
3分钟前
开心惜梦完成签到,获得积分10
4分钟前
yan完成签到,获得积分10
4分钟前
4分钟前
华仔应助圈圈采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715179
求助须知:如何正确求助?哪些是违规求助? 5231114
关于积分的说明 15274068
捐赠科研通 4866203
什么是DOI,文献DOI怎么找? 2612756
邀请新用户注册赠送积分活动 1562941
关于科研通互助平台的介绍 1520304