Research on bearing fault diagnosis based on novel MRSVD-CWT and improved CNN-LSTM

方位(导航) 断层(地质) 人工智能 计算机科学 模式识别(心理学) 地震学 地质学
作者
Yuan Guo,Jun Zhou,Zhenbiao Dong,Huan She,Weijia Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 095003-095003 被引量:11
标识
DOI:10.1088/1361-6501/ad4fb3
摘要

Abstract As a critical component in mechanical equipment, rolling bearings play a vital role in industrial production. Effective bearing fault diagnosis provides a more reliable guarantee for the safe operation of the industrial output. Traditional data-driven bearing fault diagnosis methods often have problems such as insufficient fault feature extraction and poor model generalization capabilities, resulting in reduced diagnostic accuracy. To solve these problems and significantly improve the diagnosis accuracy, this paper proposes a novel fault diagnosis method based on multi-resolution singular value decomposition (MRSVD), continuous wavelet transform (CWT), improved convolutional neural network (CNN) enhanced by convolutional block attention module, and long short-term memory (LSTM). Through MRSVD, the vibration signal is decomposed layer by layer into multiple denoised signals, thus signal noise can be eliminated to the greatest extent to gain the optimal denoised signals; then through CWT, the optimal denoised signals are converted into two-dimensional time-frequency images so that the local and global characteristic information can be fully captured. Finally, through improved CNN-LSTM, feature extraction is greatly enhanced, resulting in high accuracy of fault diagnosis. Lots of experiments are organized to test the performance, and the experimental results show that the proposed method on various datasets has better diagnosis accuracy and generalization ability under different working conditions than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuqi完成签到 ,获得积分10
3秒前
3秒前
3秒前
甜甜友容完成签到,获得积分10
4秒前
斯文败类应助a成采纳,获得10
7秒前
王道远完成签到,获得积分10
7秒前
lina完成签到 ,获得积分10
9秒前
10秒前
cc66发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
虚拟的皮卡丘完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
bow完成签到 ,获得积分10
15秒前
19秒前
优雅的WAN完成签到 ,获得积分10
20秒前
所所应助cc66采纳,获得10
20秒前
LQ完成签到,获得积分10
21秒前
hui完成签到,获得积分10
21秒前
无心的天真完成签到 ,获得积分10
22秒前
君莫笑完成签到,获得积分10
22秒前
热心不凡完成签到,获得积分10
25秒前
乌特拉完成签到 ,获得积分10
25秒前
晚风完成签到,获得积分10
25秒前
元夕完成签到,获得积分10
25秒前
飘逸蘑菇完成签到 ,获得积分10
27秒前
风中的棒棒糖完成签到 ,获得积分10
30秒前
无私的听荷完成签到,获得积分10
30秒前
飘萍过客完成签到,获得积分10
31秒前
31秒前
32秒前
32秒前
皛鱼完成签到,获得积分10
34秒前
大脸猫完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
36秒前
小林神发布了新的文献求助10
36秒前
adamchris完成签到,获得积分10
36秒前
strama完成签到,获得积分10
37秒前
梓唯忧完成签到 ,获得积分10
38秒前
38秒前
pan完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789548
求助须知:如何正确求助?哪些是违规求助? 5721282
关于积分的说明 15474982
捐赠科研通 4917368
什么是DOI,文献DOI怎么找? 2646953
邀请新用户注册赠送积分活动 1594561
关于科研通互助平台的介绍 1549099