Research on bearing fault diagnosis based on novel MRSVD-CWT and improved CNN-LSTM

方位(导航) 断层(地质) 人工智能 计算机科学 模式识别(心理学) 地震学 地质学
作者
Yuan Guo,Jun Zhou,Zhenbiao Dong,Huan She,Weijia Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 095003-095003 被引量:7
标识
DOI:10.1088/1361-6501/ad4fb3
摘要

Abstract As a critical component in mechanical equipment, rolling bearings play a vital role in industrial production. Effective bearing fault diagnosis provides a more reliable guarantee for the safe operation of the industrial output. Traditional data-driven bearing fault diagnosis methods often have problems such as insufficient fault feature extraction and poor model generalization capabilities, resulting in reduced diagnostic accuracy. To solve these problems and significantly improve the diagnosis accuracy, this paper proposes a novel fault diagnosis method based on multi-resolution singular value decomposition (MRSVD), continuous wavelet transform (CWT), improved convolutional neural network (CNN) enhanced by convolutional block attention module, and long short-term memory (LSTM). Through MRSVD, the vibration signal is decomposed layer by layer into multiple denoised signals, thus signal noise can be eliminated to the greatest extent to gain the optimal denoised signals; then through CWT, the optimal denoised signals are converted into two-dimensional time-frequency images so that the local and global characteristic information can be fully captured. Finally, through improved CNN-LSTM, feature extraction is greatly enhanced, resulting in high accuracy of fault diagnosis. Lots of experiments are organized to test the performance, and the experimental results show that the proposed method on various datasets has better diagnosis accuracy and generalization ability under different working conditions than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sbw发布了新的文献求助10
刚刚
Owen应助风清扬采纳,获得50
1秒前
李健应助热情冰兰采纳,获得20
2秒前
野性的小松鼠完成签到 ,获得积分10
3秒前
microlite完成签到,获得积分10
3秒前
汉堡包应助海德堡采纳,获得10
3秒前
别摆烂了完成签到,获得积分10
6秒前
魔猿应助xiaokk采纳,获得10
8秒前
赘婿应助xiaokk采纳,获得10
8秒前
完美世界应助研友_LNVX1L采纳,获得10
8秒前
8秒前
科目三应助乐正广山采纳,获得10
8秒前
哈哈哈哈完成签到 ,获得积分10
11秒前
柔弱浩然发布了新的文献求助10
12秒前
13秒前
扶手完成签到,获得积分10
13秒前
安诺发布了新的文献求助10
15秒前
清璃完成签到 ,获得积分10
20秒前
结实的青荷完成签到,获得积分10
20秒前
飞翔的西红柿完成签到,获得积分10
21秒前
21秒前
画仲人完成签到 ,获得积分10
23秒前
阿童木完成签到,获得积分10
23秒前
24秒前
王大宝关注了科研通微信公众号
24秒前
风一样完成签到,获得积分10
24秒前
FashionBoy应助眼睛大如天采纳,获得10
26秒前
lisu完成签到,获得积分10
26秒前
白佚行完成签到 ,获得积分10
26秒前
海德堡发布了新的文献求助10
27秒前
生动醉山完成签到,获得积分10
29秒前
悦耳的白猫完成签到,获得积分10
29秒前
31秒前
32秒前
dodo完成签到,获得积分10
33秒前
独特的魔镜完成签到,获得积分10
33秒前
34秒前
35秒前
陌路发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967175
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163672
捐赠科研通 3247423
什么是DOI,文献DOI怎么找? 1793810
邀请新用户注册赠送积分活动 874616
科研通“疑难数据库(出版商)”最低求助积分说明 804488