亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on bearing fault diagnosis based on novel MRSVD-CWT and improved CNN-LSTM

方位(导航) 断层(地质) 人工智能 计算机科学 模式识别(心理学) 地震学 地质学
作者
Yuan Guo,Jun Zhou,Zhenbiao Dong,Huan She,Weijia Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 095003-095003 被引量:11
标识
DOI:10.1088/1361-6501/ad4fb3
摘要

Abstract As a critical component in mechanical equipment, rolling bearings play a vital role in industrial production. Effective bearing fault diagnosis provides a more reliable guarantee for the safe operation of the industrial output. Traditional data-driven bearing fault diagnosis methods often have problems such as insufficient fault feature extraction and poor model generalization capabilities, resulting in reduced diagnostic accuracy. To solve these problems and significantly improve the diagnosis accuracy, this paper proposes a novel fault diagnosis method based on multi-resolution singular value decomposition (MRSVD), continuous wavelet transform (CWT), improved convolutional neural network (CNN) enhanced by convolutional block attention module, and long short-term memory (LSTM). Through MRSVD, the vibration signal is decomposed layer by layer into multiple denoised signals, thus signal noise can be eliminated to the greatest extent to gain the optimal denoised signals; then through CWT, the optimal denoised signals are converted into two-dimensional time-frequency images so that the local and global characteristic information can be fully captured. Finally, through improved CNN-LSTM, feature extraction is greatly enhanced, resulting in high accuracy of fault diagnosis. Lots of experiments are organized to test the performance, and the experimental results show that the proposed method on various datasets has better diagnosis accuracy and generalization ability under different working conditions than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
enchanted完成签到,获得积分10
4秒前
kouxinyao完成签到 ,获得积分10
4秒前
RR发布了新的文献求助10
4秒前
enchanted发布了新的文献求助10
6秒前
汝桢发布了新的文献求助10
7秒前
7秒前
10秒前
13秒前
机灵的衬衫完成签到 ,获得积分10
14秒前
左诗发布了新的文献求助10
14秒前
糟糕的颜完成签到 ,获得积分10
15秒前
16秒前
17秒前
algain完成签到 ,获得积分10
20秒前
酷波er应助肯瑞恩哭哭采纳,获得30
21秒前
胡萝卜发布了新的文献求助10
21秒前
朱孟研发布了新的文献求助10
23秒前
26秒前
34秒前
ddddddd完成签到 ,获得积分10
39秒前
40秒前
科目三应助如意小丸子采纳,获得10
40秒前
40秒前
42秒前
43秒前
一投就中发布了新的文献求助10
44秒前
ax发布了新的文献求助10
44秒前
45秒前
46秒前
默己完成签到 ,获得积分10
47秒前
左诗完成签到,获得积分10
47秒前
YangZhang发布了新的文献求助10
49秒前
51秒前
51秒前
善学以致用应助一投就中采纳,获得10
53秒前
53秒前
隐形曼青应助wyx_weirdo采纳,获得30
55秒前
阿龙发布了新的文献求助10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253441
求助须知:如何正确求助?哪些是违规求助? 4416791
关于积分的说明 13750469
捐赠科研通 4289194
什么是DOI,文献DOI怎么找? 2353310
邀请新用户注册赠送积分活动 1350007
关于科研通互助平台的介绍 1309854