Multi-Scale Self-Attention Approach for Analysing Motor Imagery Signals in Brain-Computer Interfaces

运动表象 脑-机接口 比例(比率) 心理学 计算机科学 认知心理学 人工智能 脑电图 神经科学 地图学 地理
作者
Mohammed Wasim Bhatt,Sparsh Sharma
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:408: 110182-110182 被引量:1
标识
DOI:10.1016/j.jneumeth.2024.110182
摘要

Motor imagery-based electroencephalogram (EEG) brain-computer interface (BCI) technology has seen tremendous advancements in the past several years. Deep learning has outperformed more traditional approaches, such next-gen neuro-technologies, in terms of productivity. It is still challenging to develop and train an end-to-end network that can sufficiently extract the possible characteristics from EEG data used in motor imaging. Brain-computer interface research is largely reliant on the fundamental problem of accurately classifying EEG data. There are still many challenges in the field of MI classification even after researchers have proposed a variety of methods, such as deep learning and machine learning techniques. We provide a model for four-class categorization of motor imagery EEG signals using attention mechanisms: left hand, right hand, foot, and tongue/rest. The model is built on multi-scale spatiotemporal self-attention networks. To determine the most effective channels, self-attention networks are implemented spatially to assign greater weight to channels associated with motion and lesser weight to channels unrelated to motion. To eliminate noise in the temporal domain, parallel multi-scale Temporal Convolutional Network (TCN) layers are utilized to extract temporal domain features at various scales. On the IV-2b dataset from the BCI Competition, the suggested model achieved an accuracy of 85.09%; on the IV-2a and IV-2b datasets from the HGD datasets, it was 96.26%. In single-subject classification, this approach demonstrates superior accuracy when compared to existing methods. The findings suggest that this approach exhibits commendable performance, resilience, and capacity for transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韭菜盒子发布了新的文献求助10
刚刚
刚刚
刚刚
Cochane发布了新的文献求助10
1秒前
monday完成签到,获得积分10
1秒前
sunnyhhh完成签到,获得积分10
1秒前
aaa完成签到,获得积分10
1秒前
1秒前
1秒前
勿庸发布了新的文献求助10
2秒前
犹豫的忆梅完成签到,获得积分10
2秒前
2秒前
周助完成签到,获得积分10
2秒前
jack1511完成签到,获得积分20
2秒前
敏感初露完成签到,获得积分10
3秒前
冯冯完成签到 ,获得积分10
3秒前
科研通AI5应助落寞的紫山采纳,获得10
3秒前
gaos发布了新的文献求助10
3秒前
嘻嘻完成签到,获得积分10
3秒前
脑洞疼应助哈哈采纳,获得10
3秒前
Yfvonne完成签到,获得积分10
4秒前
蕾蕾不爱科研完成签到,获得积分10
4秒前
苹果南烟完成签到,获得积分10
4秒前
4秒前
可靠的书本完成签到,获得积分10
4秒前
4秒前
thousandlong发布了新的文献求助10
5秒前
完美世界应助艺玲采纳,获得10
5秒前
尘南浔完成签到 ,获得积分10
5秒前
月亮明星完成签到,获得积分10
5秒前
Jasper应助einuo采纳,获得10
6秒前
6秒前
7秒前
科研小bai完成签到,获得积分10
7秒前
深情安青应助韭菜盒子采纳,获得10
7秒前
7秒前
Akim应助科研小白采纳,获得10
8秒前
Eric完成签到,获得积分10
8秒前
8秒前
Keep完成签到,获得积分20
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740