Multi-Scale Self-Attention Approach for Analysing Motor Imagery Signals in Brain-Computer Interfaces

运动表象 脑-机接口 比例(比率) 心理学 计算机科学 认知心理学 人工智能 脑电图 神经科学 地图学 地理
作者
Mohammed Wasim Bhatt,Sparsh Sharma
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:408: 110182-110182 被引量:1
标识
DOI:10.1016/j.jneumeth.2024.110182
摘要

Motor imagery-based electroencephalogram (EEG) brain-computer interface (BCI) technology has seen tremendous advancements in the past several years. Deep learning has outperformed more traditional approaches, such next-gen neuro-technologies, in terms of productivity. It is still challenging to develop and train an end-to-end network that can sufficiently extract the possible characteristics from EEG data used in motor imaging. Brain-computer interface research is largely reliant on the fundamental problem of accurately classifying EEG data. There are still many challenges in the field of MI classification even after researchers have proposed a variety of methods, such as deep learning and machine learning techniques. We provide a model for four-class categorization of motor imagery EEG signals using attention mechanisms: left hand, right hand, foot, and tongue/rest. The model is built on multi-scale spatiotemporal self-attention networks. To determine the most effective channels, self-attention networks are implemented spatially to assign greater weight to channels associated with motion and lesser weight to channels unrelated to motion. To eliminate noise in the temporal domain, parallel multi-scale Temporal Convolutional Network (TCN) layers are utilized to extract temporal domain features at various scales. On the IV-2b dataset from the BCI Competition, the suggested model achieved an accuracy of 85.09%; on the IV-2a and IV-2b datasets from the HGD datasets, it was 96.26%. In single-subject classification, this approach demonstrates superior accuracy when compared to existing methods. The findings suggest that this approach exhibits commendable performance, resilience, and capacity for transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助v小飞侠101采纳,获得10
1秒前
晴小阳完成签到,获得积分10
1秒前
沙拉完成签到,获得积分10
3秒前
4秒前
清秀寇完成签到,获得积分10
6秒前
ding应助鳗鱼文涛采纳,获得10
8秒前
落寞剑成完成签到 ,获得积分10
9秒前
甜美梦槐发布了新的文献求助10
9秒前
Liufgui应助DianaRang采纳,获得10
11秒前
大个应助云横秦岭家何在采纳,获得10
11秒前
14秒前
17秒前
18秒前
Michael应助快乐仙知采纳,获得20
20秒前
灵儿完成签到,获得积分10
21秒前
鳗鱼文涛发布了新的文献求助10
21秒前
研友_ngKyqn发布了新的文献求助10
21秒前
鸭屎香菜完成签到,获得积分10
21秒前
kittency完成签到 ,获得积分10
22秒前
哦哦完成签到 ,获得积分10
22秒前
24秒前
李岸完成签到,获得积分10
24秒前
SYLH应助欢hhh采纳,获得30
25秒前
晚星完成签到,获得积分10
25秒前
29秒前
RhapsodyHua发布了新的文献求助10
30秒前
31秒前
Rubby应助火星上问柳采纳,获得10
34秒前
v小飞侠101发布了新的文献求助10
35秒前
李柯莹发布了新的文献求助10
37秒前
怕黑半仙完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
46秒前
46秒前
枫于林完成签到 ,获得积分10
50秒前
51秒前
lml完成签到,获得积分10
51秒前
Mia发布了新的文献求助30
53秒前
RhapsodyHua完成签到,获得积分10
54秒前
55秒前
简单白风完成签到 ,获得积分10
57秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167