Multi-Scale Self-Attention Approach for Analysing Motor Imagery Signals in Brain-Computer Interfaces

运动表象 脑-机接口 比例(比率) 心理学 计算机科学 认知心理学 人工智能 脑电图 神经科学 地图学 地理
作者
Mohammed Wasim Bhatt,Sparsh Sharma
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:408: 110182-110182 被引量:1
标识
DOI:10.1016/j.jneumeth.2024.110182
摘要

Motor imagery-based electroencephalogram (EEG) brain-computer interface (BCI) technology has seen tremendous advancements in the past several years. Deep learning has outperformed more traditional approaches, such next-gen neuro-technologies, in terms of productivity. It is still challenging to develop and train an end-to-end network that can sufficiently extract the possible characteristics from EEG data used in motor imaging. Brain-computer interface research is largely reliant on the fundamental problem of accurately classifying EEG data. There are still many challenges in the field of MI classification even after researchers have proposed a variety of methods, such as deep learning and machine learning techniques. We provide a model for four-class categorization of motor imagery EEG signals using attention mechanisms: left hand, right hand, foot, and tongue/rest. The model is built on multi-scale spatiotemporal self-attention networks. To determine the most effective channels, self-attention networks are implemented spatially to assign greater weight to channels associated with motion and lesser weight to channels unrelated to motion. To eliminate noise in the temporal domain, parallel multi-scale Temporal Convolutional Network (TCN) layers are utilized to extract temporal domain features at various scales. On the IV-2b dataset from the BCI Competition, the suggested model achieved an accuracy of 85.09%; on the IV-2a and IV-2b datasets from the HGD datasets, it was 96.26%. In single-subject classification, this approach demonstrates superior accuracy when compared to existing methods. The findings suggest that this approach exhibits commendable performance, resilience, and capacity for transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ash完成签到,获得积分10
1秒前
乔滴滴完成签到 ,获得积分10
2秒前
苏信怜完成签到,获得积分10
2秒前
...完成签到,获得积分10
2秒前
nn发布了新的文献求助10
2秒前
4秒前
吃梨小手完成签到,获得积分10
4秒前
快让我滚蛋毕业完成签到,获得积分10
5秒前
YG完成签到,获得积分10
5秒前
浮游应助欣慰的天奇采纳,获得10
5秒前
wangyaofeng完成签到,获得积分10
6秒前
snow完成签到,获得积分10
7秒前
Sissi完成签到,获得积分10
7秒前
可爱语芹完成签到 ,获得积分10
8秒前
G_G发布了新的文献求助10
10秒前
西瓜橙子完成签到,获得积分10
10秒前
萤火虫完成签到,获得积分10
10秒前
852应助心斋采纳,获得10
11秒前
Linda琳完成签到,获得积分10
12秒前
Memory完成签到,获得积分10
12秒前
窝窝头完成签到 ,获得积分10
12秒前
星辰大海应助Brenda采纳,获得10
12秒前
梦凡完成签到,获得积分10
12秒前
nn完成签到,获得积分10
12秒前
13秒前
赵一完成签到,获得积分10
13秒前
江海客发布了新的文献求助10
13秒前
孤独的大灰狼完成签到 ,获得积分10
13秒前
上善若水完成签到,获得积分10
13秒前
13秒前
李静完成签到,获得积分20
14秒前
畅快的长颈鹿完成签到,获得积分10
14秒前
zyf完成签到,获得积分10
15秒前
盛夏完成签到,获得积分10
15秒前
龙眼完成签到,获得积分10
15秒前
研友_24789完成签到,获得积分10
15秒前
Lion完成签到,获得积分10
16秒前
L7.完成签到,获得积分10
16秒前
callmefather发布了新的文献求助10
16秒前
酷波er应助帆帆帆采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080494
捐赠科研通 4434084
什么是DOI,文献DOI怎么找? 2434382
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349