已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Neural Network for the Prediction of KRAS, NRAS and BRAF Genotypes in left-sided colorectal cancer based on histopathologic images

克拉斯 神经母细胞瘤RAS病毒癌基因同源物 医学 结直肠癌 队列 肿瘤科 内科学 病态的 癌症 阶段(地层学) 病理 人工智能 计算机科学 生物 古生物学
作者
Xuejie Li,Xianda Chi,Pinjie Huang,Qiong Liang,Jianpei Liu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:115: 102384-102384 被引量:4
标识
DOI:10.1016/j.compmedimag.2024.102384
摘要

The KRAS, NRAS, and BRAF genotypes are critical for selecting targeted therapies for patients with metastatic colorectal cancer (mCRC). Here, we aimed to develop a deep learning model that utilizes pathologic whole-slide images (WSIs) to accurately predict the status of KRAS, NRAS, and BRAFV600E. 129 patients with left-sided colon cancer and rectal cancer from the Third Affiliated Hospital of Sun Yat-sen University were assigned to the training and testing cohorts. Utilizing three convolutional neural networks (ResNet18, ResNet50, and Inception v3), we extracted 206 pathological features from H&E-stained WSIs, serving as the foundation for constructing specific pathological models. A clinical feature model was then developed, with carcinoembryonic antigen (CEA) identified through comprehensive multiple regression analysis as the key biomarker. Subsequently, these two models were combined to create a clinical-pathological integrated model, resulting in a total of three genetic prediction models. 103 patients were evaluated in the training cohort (1,782,302 image tiles), while the remaining 26 patients were enrolled in the testing cohort (489,481 image tiles). Compared with the clinical model and the pathology model, the combined model which incorporated CEA levels and pathological signatures, showed increased predictive ability, with an area under the curve (AUC) of 0.96 in the training and an AUC of 0.83 in the testing cohort, accompanied by a high positive predictive value (PPV 0.92). The combined model demonstrated a considerable ability to accurately predict the status of KRAS, NRAS, and BRAFV600E in patients with left-sided colorectal cancer, with potential application to assist doctors in developing targeted treatment strategies for mCRC patients, and effectively identifying mutations and eliminating the need for confirmatory genetic testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研学术完成签到,获得积分10
5秒前
全鑫发布了新的文献求助10
5秒前
义气的青枫完成签到 ,获得积分10
6秒前
fei完成签到 ,获得积分10
6秒前
7秒前
Brenna完成签到 ,获得积分10
9秒前
ccm应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
mashibeo应助科研通管家采纳,获得10
10秒前
10秒前
pluto应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
mashibeo应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得40
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
共享精神应助xwz626采纳,获得10
11秒前
reece完成签到 ,获得积分10
12秒前
15秒前
钰L发布了新的文献求助10
15秒前
优美的莹芝完成签到,获得积分10
20秒前
全鑫完成签到,获得积分10
21秒前
123关注了科研通微信公众号
21秒前
Ade完成签到,获得积分10
22秒前
哈哈完成签到 ,获得积分10
24秒前
跳跃的鹏飞完成签到 ,获得积分0
25秒前
博弈春秋发布了新的文献求助10
25秒前
科研通AI6应助Jodie采纳,获得10
26秒前
斯文败类应助是阿瑾呀采纳,获得10
27秒前
lmplzzp发布了新的文献求助30
28秒前
鱼鱼籽不认路完成签到 ,获得积分10
29秒前
fx完成签到 ,获得积分10
29秒前
bastien完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458682
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296618
捐赠科研通 4489782
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424502