Deep Neural Network for the Prediction of KRAS, NRAS and BRAF Genotypes in left-sided colorectal cancer based on histopathologic images

克拉斯 神经母细胞瘤RAS病毒癌基因同源物 医学 结直肠癌 队列 肿瘤科 内科学 病态的 癌症 阶段(地层学) 病理 人工智能 计算机科学 生物 古生物学
作者
Xuejie Li,Xianda Chi,Pinjie Huang,Qiong Liang,Jianpei Liu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:115: 102384-102384 被引量:4
标识
DOI:10.1016/j.compmedimag.2024.102384
摘要

The KRAS, NRAS, and BRAF genotypes are critical for selecting targeted therapies for patients with metastatic colorectal cancer (mCRC). Here, we aimed to develop a deep learning model that utilizes pathologic whole-slide images (WSIs) to accurately predict the status of KRAS, NRAS, and BRAFV600E. 129 patients with left-sided colon cancer and rectal cancer from the Third Affiliated Hospital of Sun Yat-sen University were assigned to the training and testing cohorts. Utilizing three convolutional neural networks (ResNet18, ResNet50, and Inception v3), we extracted 206 pathological features from H&E-stained WSIs, serving as the foundation for constructing specific pathological models. A clinical feature model was then developed, with carcinoembryonic antigen (CEA) identified through comprehensive multiple regression analysis as the key biomarker. Subsequently, these two models were combined to create a clinical-pathological integrated model, resulting in a total of three genetic prediction models. 103 patients were evaluated in the training cohort (1,782,302 image tiles), while the remaining 26 patients were enrolled in the testing cohort (489,481 image tiles). Compared with the clinical model and the pathology model, the combined model which incorporated CEA levels and pathological signatures, showed increased predictive ability, with an area under the curve (AUC) of 0.96 in the training and an AUC of 0.83 in the testing cohort, accompanied by a high positive predictive value (PPV 0.92). The combined model demonstrated a considerable ability to accurately predict the status of KRAS, NRAS, and BRAFV600E in patients with left-sided colorectal cancer, with potential application to assist doctors in developing targeted treatment strategies for mCRC patients, and effectively identifying mutations and eliminating the need for confirmatory genetic testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布布发布了新的文献求助10
刚刚
刚刚
jasmineee发布了新的文献求助10
1秒前
漂亮月亮发布了新的文献求助30
1秒前
Stan发布了新的文献求助10
2秒前
2秒前
赘婿应助不信人间有白头采纳,获得10
3秒前
3秒前
6秒前
6秒前
kk雯发布了新的文献求助10
6秒前
TCMning发布了新的文献求助10
7秒前
Timezzz完成签到,获得积分20
10秒前
时不我待完成签到,获得积分10
10秒前
hulian发布了新的文献求助10
10秒前
胖虎发布了新的文献求助10
11秒前
11秒前
Aryy发布了新的文献求助10
12秒前
CodeCraft应助漂亮月亮采纳,获得10
12秒前
小启发布了新的文献求助10
13秒前
13秒前
健壮傲之完成签到 ,获得积分10
13秒前
14秒前
FashionBoy应助悬铃木采纳,获得30
14秒前
大尾尾发布了新的文献求助10
15秒前
momokop发布了新的文献求助10
15秒前
15秒前
kk雯完成签到,获得积分20
15秒前
16秒前
华仔应助Timezzz采纳,获得10
16秒前
17秒前
aga发布了新的文献求助10
19秒前
czm发布了新的文献求助70
19秒前
小马甲应助外向语蝶采纳,获得10
20秒前
英姑应助一粟采纳,获得10
22秒前
mhpvv发布了新的文献求助10
23秒前
共享精神应助luochen采纳,获得10
23秒前
脑洞疼应助夏老师采纳,获得10
24秒前
mmmi完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589919
求助须知:如何正确求助?哪些是违规求助? 4674386
关于积分的说明 14793761
捐赠科研通 4629344
什么是DOI,文献DOI怎么找? 2532468
邀请新用户注册赠送积分活动 1501123
关于科研通互助平台的介绍 1468527