Deep Neural Network for the Prediction of KRAS, NRAS and BRAF Genotypes in left-sided colorectal cancer based on histopathologic images

克拉斯 神经母细胞瘤RAS病毒癌基因同源物 医学 结直肠癌 队列 肿瘤科 内科学 病态的 癌症 阶段(地层学) 病理 人工智能 计算机科学 生物 古生物学
作者
Xuejie Li,Xianda Chi,Pinjie Huang,Qiong Liang,Jianpei Liu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:115: 102384-102384 被引量:4
标识
DOI:10.1016/j.compmedimag.2024.102384
摘要

The KRAS, NRAS, and BRAF genotypes are critical for selecting targeted therapies for patients with metastatic colorectal cancer (mCRC). Here, we aimed to develop a deep learning model that utilizes pathologic whole-slide images (WSIs) to accurately predict the status of KRAS, NRAS, and BRAFV600E. 129 patients with left-sided colon cancer and rectal cancer from the Third Affiliated Hospital of Sun Yat-sen University were assigned to the training and testing cohorts. Utilizing three convolutional neural networks (ResNet18, ResNet50, and Inception v3), we extracted 206 pathological features from H&E-stained WSIs, serving as the foundation for constructing specific pathological models. A clinical feature model was then developed, with carcinoembryonic antigen (CEA) identified through comprehensive multiple regression analysis as the key biomarker. Subsequently, these two models were combined to create a clinical-pathological integrated model, resulting in a total of three genetic prediction models. 103 patients were evaluated in the training cohort (1,782,302 image tiles), while the remaining 26 patients were enrolled in the testing cohort (489,481 image tiles). Compared with the clinical model and the pathology model, the combined model which incorporated CEA levels and pathological signatures, showed increased predictive ability, with an area under the curve (AUC) of 0.96 in the training and an AUC of 0.83 in the testing cohort, accompanied by a high positive predictive value (PPV 0.92). The combined model demonstrated a considerable ability to accurately predict the status of KRAS, NRAS, and BRAFV600E in patients with left-sided colorectal cancer, with potential application to assist doctors in developing targeted treatment strategies for mCRC patients, and effectively identifying mutations and eliminating the need for confirmatory genetic testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助一一采纳,获得10
刚刚
虚心的沅发布了新的文献求助10
刚刚
1秒前
映寒应助Angie采纳,获得10
1秒前
蓟菏为衣发布了新的文献求助10
1秒前
甜北枳发布了新的文献求助10
1秒前
yumo发布了新的文献求助10
2秒前
豆兼米发布了新的文献求助10
2秒前
3秒前
桐桐应助Yags采纳,获得10
3秒前
故事的小红花完成签到,获得积分10
3秒前
Orange应助MFDL采纳,获得10
3秒前
3秒前
dayu发布了新的文献求助10
4秒前
珊珊来迟完成签到,获得积分10
4秒前
周旭完成签到,获得积分20
4秒前
5秒前
秋殤发布了新的文献求助10
5秒前
Wuc发布了新的文献求助10
5秒前
cmcm发布了新的文献求助10
5秒前
zyj完成签到,获得积分10
6秒前
英姑应助GLv采纳,获得10
6秒前
10秒前
11秒前
11秒前
852应助无限的绮晴采纳,获得10
13秒前
柯旭完成签到,获得积分10
13秒前
CipherSage应助爱撒娇的冰安采纳,获得10
13秒前
浮生若梦完成签到,获得积分10
13秒前
13秒前
月亮完成签到,获得积分10
15秒前
一一发布了新的文献求助10
16秒前
16秒前
ghhhn完成签到,获得积分10
16秒前
无花果应助虚心纸飞机采纳,获得80
16秒前
Akim应助萌新采纳,获得10
17秒前
小蘑菇应助杰杰大叔采纳,获得10
17秒前
LOYAL发布了新的文献求助10
18秒前
ywayw发布了新的文献求助30
18秒前
orixero应助子车甫昭采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183473
求助须知:如何正确求助?哪些是违规求助? 4369781
关于积分的说明 13607386
捐赠科研通 4221555
什么是DOI,文献DOI怎么找? 2315256
邀请新用户注册赠送积分活动 1313969
关于科研通互助平台的介绍 1262801