亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Neural Network for the Prediction of KRAS, NRAS and BRAF Genotypes in left-sided colorectal cancer based on histopathologic images

克拉斯 神经母细胞瘤RAS病毒癌基因同源物 医学 结直肠癌 队列 肿瘤科 内科学 病态的 癌症 阶段(地层学) 病理 人工智能 计算机科学 生物 古生物学
作者
Xuejie Li,Xianda Chi,Pinjie Huang,Qiong Liang,Jianpei Liu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:115: 102384-102384
标识
DOI:10.1016/j.compmedimag.2024.102384
摘要

The KRAS, NRAS, and BRAF genotypes are critical for selecting targeted therapies for patients with metastatic colorectal cancer (mCRC). Here, we aimed to develop a deep learning model that utilizes pathologic whole-slide images (WSIs) to accurately predict the status of KRAS, NRAS, and BRAFV600E. 129 patients with left-sided colon cancer and rectal cancer from the Third Affiliated Hospital of Sun Yat-sen University were assigned to the training and testing cohorts. Utilizing three convolutional neural networks (ResNet18, ResNet50, and Inception v3), we extracted 206 pathological features from H&E-stained WSIs, serving as the foundation for constructing specific pathological models. A clinical feature model was then developed, with carcinoembryonic antigen (CEA) identified through comprehensive multiple regression analysis as the key biomarker. Subsequently, these two models were combined to create a clinical-pathological integrated model, resulting in a total of three genetic prediction models. 103 patients were evaluated in the training cohort (1,782,302 image tiles), while the remaining 26 patients were enrolled in the testing cohort (489,481 image tiles). Compared with the clinical model and the pathology model, the combined model which incorporated CEA levels and pathological signatures, showed increased predictive ability, with an area under the curve (AUC) of 0.96 in the training and an AUC of 0.83 in the testing cohort, accompanied by a high positive predictive value (PPV 0.92). The combined model demonstrated a considerable ability to accurately predict the status of KRAS, NRAS, and BRAFV600E in patients with left-sided colorectal cancer, with potential application to assist doctors in developing targeted treatment strategies for mCRC patients, and effectively identifying mutations and eliminating the need for confirmatory genetic testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wq完成签到 ,获得积分10
9秒前
22秒前
30秒前
从容芮完成签到,获得积分0
30秒前
34秒前
jimmy完成签到,获得积分10
34秒前
完颜刚完成签到 ,获得积分10
34秒前
narcissuxxs发布了新的文献求助10
36秒前
Able完成签到,获得积分10
50秒前
脑洞疼应助孙文杰采纳,获得10
54秒前
1分钟前
Leo完成签到 ,获得积分10
1分钟前
李健的小迷弟应助GGGGEEEE采纳,获得10
1分钟前
1分钟前
孙文杰发布了新的文献求助10
1分钟前
1分钟前
1分钟前
GGGGEEEE发布了新的文献求助10
1分钟前
冷静雅香完成签到,获得积分10
2分钟前
冷静雅香发布了新的文献求助10
2分钟前
2分钟前
端庄大白完成签到 ,获得积分10
3分钟前
ldysaber完成签到,获得积分0
3分钟前
3分钟前
可爱的函函应助熊有鹏采纳,获得10
3分钟前
3分钟前
熊有鹏发布了新的文献求助10
3分钟前
熊有鹏完成签到,获得积分20
3分钟前
4分钟前
伽利略发布了新的文献求助10
4分钟前
Mufreh应助morena采纳,获得10
4分钟前
赘婿应助孙文杰采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研小白应助科研通管家采纳,获得10
4分钟前
JamesPei应助samera采纳,获得10
4分钟前
kookkiki完成签到 ,获得积分10
4分钟前
Yvette2024完成签到,获得积分10
4分钟前
4分钟前
4分钟前
samera发布了新的文献求助10
4分钟前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Effect of reactor temperature on FCC yield 1700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
Production Logging: Theoretical and Interpretive Elements 555
电解铜箔实用技术手册 540
Organic Synthesis 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3284012
求助须知:如何正确求助?哪些是违规求助? 2921599
关于积分的说明 8406777
捐赠科研通 2593268
什么是DOI,文献DOI怎么找? 1413784
科研通“疑难数据库(出版商)”最低求助积分说明 658596
邀请新用户注册赠送积分活动 640395