Deep Neural Network for the Prediction of KRAS, NRAS and BRAF Genotypes in left-sided colorectal cancer based on histopathologic images

克拉斯 神经母细胞瘤RAS病毒癌基因同源物 医学 结直肠癌 队列 肿瘤科 内科学 病态的 癌症 阶段(地层学) 病理 人工智能 计算机科学 生物 古生物学
作者
Xuejie Li,Xianda Chi,Pinjie Huang,Qiong Liang,Jianpei Liu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:115: 102384-102384 被引量:4
标识
DOI:10.1016/j.compmedimag.2024.102384
摘要

The KRAS, NRAS, and BRAF genotypes are critical for selecting targeted therapies for patients with metastatic colorectal cancer (mCRC). Here, we aimed to develop a deep learning model that utilizes pathologic whole-slide images (WSIs) to accurately predict the status of KRAS, NRAS, and BRAFV600E. 129 patients with left-sided colon cancer and rectal cancer from the Third Affiliated Hospital of Sun Yat-sen University were assigned to the training and testing cohorts. Utilizing three convolutional neural networks (ResNet18, ResNet50, and Inception v3), we extracted 206 pathological features from H&E-stained WSIs, serving as the foundation for constructing specific pathological models. A clinical feature model was then developed, with carcinoembryonic antigen (CEA) identified through comprehensive multiple regression analysis as the key biomarker. Subsequently, these two models were combined to create a clinical-pathological integrated model, resulting in a total of three genetic prediction models. 103 patients were evaluated in the training cohort (1,782,302 image tiles), while the remaining 26 patients were enrolled in the testing cohort (489,481 image tiles). Compared with the clinical model and the pathology model, the combined model which incorporated CEA levels and pathological signatures, showed increased predictive ability, with an area under the curve (AUC) of 0.96 in the training and an AUC of 0.83 in the testing cohort, accompanied by a high positive predictive value (PPV 0.92). The combined model demonstrated a considerable ability to accurately predict the status of KRAS, NRAS, and BRAFV600E in patients with left-sided colorectal cancer, with potential application to assist doctors in developing targeted treatment strategies for mCRC patients, and effectively identifying mutations and eliminating the need for confirmatory genetic testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助hutao采纳,获得10
刚刚
1秒前
yyyyyy完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
Yikami完成签到,获得积分10
3秒前
123发布了新的文献求助10
4秒前
4秒前
paopaolalala完成签到,获得积分10
6秒前
vffg完成签到,获得积分10
7秒前
7秒前
9秒前
Jasper应助怡然雨雪采纳,获得10
9秒前
学术大白完成签到 ,获得积分10
9秒前
橘子汽水完成签到 ,获得积分10
9秒前
9秒前
CipherSage应助1111采纳,获得10
10秒前
FG发布了新的文献求助10
10秒前
Merovin发布了新的文献求助10
11秒前
内向雨南发布了新的文献求助10
12秒前
hutao发布了新的文献求助10
13秒前
搜集达人应助安静的幻儿采纳,获得10
15秒前
哈哈哈哈发布了新的文献求助10
16秒前
lim完成签到,获得积分10
16秒前
NexusExplorer应助123采纳,获得10
16秒前
能HJY完成签到,获得积分10
17秒前
cc321完成签到 ,获得积分10
18秒前
kk完成签到,获得积分10
18秒前
18秒前
lxx完成签到,获得积分20
18秒前
王嘉惠完成签到 ,获得积分20
18秒前
20秒前
21秒前
孤独的半山关注了科研通微信公众号
21秒前
一叶知秋应助孙嘉畯采纳,获得10
22秒前
Orange应助自己采纳,获得10
23秒前
23秒前
彭于晏应助阳佟怀绿采纳,获得10
23秒前
24秒前
26秒前
Kai完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405445
求助须知:如何正确求助?哪些是违规求助? 4523755
关于积分的说明 14095215
捐赠科研通 4437445
什么是DOI,文献DOI怎么找? 2435716
邀请新用户注册赠送积分活动 1427824
关于科研通互助平台的介绍 1406086