Deep Neural Network for the Prediction of KRAS, NRAS and BRAF Genotypes in left-sided colorectal cancer based on histopathologic images

克拉斯 神经母细胞瘤RAS病毒癌基因同源物 医学 结直肠癌 队列 肿瘤科 内科学 病态的 癌症 阶段(地层学) 病理 人工智能 计算机科学 生物 古生物学
作者
Xuejie Li,Xianda Chi,Pinjie Huang,Qiong Liang,Jianpei Liu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:115: 102384-102384 被引量:4
标识
DOI:10.1016/j.compmedimag.2024.102384
摘要

The KRAS, NRAS, and BRAF genotypes are critical for selecting targeted therapies for patients with metastatic colorectal cancer (mCRC). Here, we aimed to develop a deep learning model that utilizes pathologic whole-slide images (WSIs) to accurately predict the status of KRAS, NRAS, and BRAFV600E. 129 patients with left-sided colon cancer and rectal cancer from the Third Affiliated Hospital of Sun Yat-sen University were assigned to the training and testing cohorts. Utilizing three convolutional neural networks (ResNet18, ResNet50, and Inception v3), we extracted 206 pathological features from H&E-stained WSIs, serving as the foundation for constructing specific pathological models. A clinical feature model was then developed, with carcinoembryonic antigen (CEA) identified through comprehensive multiple regression analysis as the key biomarker. Subsequently, these two models were combined to create a clinical-pathological integrated model, resulting in a total of three genetic prediction models. 103 patients were evaluated in the training cohort (1,782,302 image tiles), while the remaining 26 patients were enrolled in the testing cohort (489,481 image tiles). Compared with the clinical model and the pathology model, the combined model which incorporated CEA levels and pathological signatures, showed increased predictive ability, with an area under the curve (AUC) of 0.96 in the training and an AUC of 0.83 in the testing cohort, accompanied by a high positive predictive value (PPV 0.92). The combined model demonstrated a considerable ability to accurately predict the status of KRAS, NRAS, and BRAFV600E in patients with left-sided colorectal cancer, with potential application to assist doctors in developing targeted treatment strategies for mCRC patients, and effectively identifying mutations and eliminating the need for confirmatory genetic testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助哈哈和采纳,获得10
1秒前
1秒前
2秒前
2秒前
憨憨发布了新的文献求助10
2秒前
xuan完成签到,获得积分10
2秒前
隐形曼青应助邢夏之采纳,获得10
2秒前
wangxr完成签到,获得积分10
3秒前
3秒前
Mic应助Wayne采纳,获得10
3秒前
Ryubot发布了新的文献求助10
3秒前
4秒前
xupt唐僧发布了新的文献求助10
4秒前
jj完成签到,获得积分10
4秒前
努力的欢欢完成签到,获得积分10
4秒前
AshleyD完成签到,获得积分10
4秒前
5秒前
斜阳完成签到 ,获得积分10
5秒前
风趣过客发布了新的文献求助20
6秒前
leo_zjm完成签到,获得积分10
6秒前
mTOR完成签到,获得积分10
6秒前
wangdongjiao发布了新的文献求助10
6秒前
yyy完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
kk完成签到,获得积分10
8秒前
研友_8RlQ2n完成签到,获得积分10
8秒前
estrale完成签到,获得积分10
8秒前
顺心纸鹤发布了新的文献求助10
9秒前
9秒前
普鲁卡因发布了新的文献求助10
10秒前
风趣过客完成签到,获得积分10
10秒前
11秒前
11秒前
gouqi完成签到,获得积分10
11秒前
天蓝完成签到,获得积分10
11秒前
zhnf1179完成签到,获得积分10
11秒前
研友_85YNe8完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034