Deep Neural Network for the Prediction of KRAS, NRAS and BRAF Genotypes in left-sided colorectal cancer based on histopathologic images

克拉斯 神经母细胞瘤RAS病毒癌基因同源物 医学 结直肠癌 队列 肿瘤科 内科学 病态的 癌症 阶段(地层学) 病理 人工智能 计算机科学 生物 古生物学
作者
Xuejie Li,Xianda Chi,Pinjie Huang,Qiong Liang,Jianpei Liu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:115: 102384-102384 被引量:4
标识
DOI:10.1016/j.compmedimag.2024.102384
摘要

The KRAS, NRAS, and BRAF genotypes are critical for selecting targeted therapies for patients with metastatic colorectal cancer (mCRC). Here, we aimed to develop a deep learning model that utilizes pathologic whole-slide images (WSIs) to accurately predict the status of KRAS, NRAS, and BRAFV600E. 129 patients with left-sided colon cancer and rectal cancer from the Third Affiliated Hospital of Sun Yat-sen University were assigned to the training and testing cohorts. Utilizing three convolutional neural networks (ResNet18, ResNet50, and Inception v3), we extracted 206 pathological features from H&E-stained WSIs, serving as the foundation for constructing specific pathological models. A clinical feature model was then developed, with carcinoembryonic antigen (CEA) identified through comprehensive multiple regression analysis as the key biomarker. Subsequently, these two models were combined to create a clinical-pathological integrated model, resulting in a total of three genetic prediction models. 103 patients were evaluated in the training cohort (1,782,302 image tiles), while the remaining 26 patients were enrolled in the testing cohort (489,481 image tiles). Compared with the clinical model and the pathology model, the combined model which incorporated CEA levels and pathological signatures, showed increased predictive ability, with an area under the curve (AUC) of 0.96 in the training and an AUC of 0.83 in the testing cohort, accompanied by a high positive predictive value (PPV 0.92). The combined model demonstrated a considerable ability to accurately predict the status of KRAS, NRAS, and BRAFV600E in patients with left-sided colorectal cancer, with potential application to assist doctors in developing targeted treatment strategies for mCRC patients, and effectively identifying mutations and eliminating the need for confirmatory genetic testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助将个烂就采纳,获得10
刚刚
45发布了新的文献求助30
2秒前
Nana发布了新的文献求助10
2秒前
2秒前
yufancy02发布了新的文献求助10
5秒前
科研通AI6应助鱼鱼鱼采纳,获得10
5秒前
酷波er应助难过含烟采纳,获得10
5秒前
UHPC完成签到,获得积分10
6秒前
忽而今夏发布了新的文献求助30
6秒前
7秒前
7秒前
fm发布了新的文献求助10
7秒前
拼搏靖巧发布了新的文献求助10
8秒前
星star完成签到 ,获得积分10
9秒前
djbj2022发布了新的文献求助10
9秒前
华仔应助什么什么哇偶采纳,获得10
10秒前
11秒前
SisiZheng发布了新的文献求助10
12秒前
陈祥薇是大聪明完成签到 ,获得积分10
12秒前
12秒前
13秒前
落木发布了新的文献求助10
14秒前
14秒前
l123完成签到 ,获得积分10
14秒前
kk99123应助dtmdg采纳,获得10
15秒前
缥缈怀绿完成签到 ,获得积分10
15秒前
15秒前
L外驴尔X发布了新的文献求助10
16秒前
lunar完成签到 ,获得积分10
16秒前
劳伦斯完成签到 ,获得积分10
17秒前
SisiZheng完成签到,获得积分20
18秒前
18秒前
唐唐完成签到,获得积分10
18秒前
godblessyou发布了新的文献求助10
19秒前
无限的水壶完成签到 ,获得积分10
20秒前
李爱国应助愉快云朵采纳,获得10
20秒前
20秒前
zzz发布了新的文献求助10
20秒前
xiaobai发布了新的文献求助10
22秒前
852应助yuan采纳,获得10
22秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930