Deep Neural Network for the Prediction of KRAS, NRAS and BRAF Genotypes in left-sided colorectal cancer based on histopathologic images

克拉斯 神经母细胞瘤RAS病毒癌基因同源物 医学 结直肠癌 队列 肿瘤科 内科学 病态的 癌症 阶段(地层学) 病理 人工智能 计算机科学 生物 古生物学
作者
Xuejie Li,Xianda Chi,Pinjie Huang,Qiong Liang,Jianpei Liu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:115: 102384-102384 被引量:4
标识
DOI:10.1016/j.compmedimag.2024.102384
摘要

The KRAS, NRAS, and BRAF genotypes are critical for selecting targeted therapies for patients with metastatic colorectal cancer (mCRC). Here, we aimed to develop a deep learning model that utilizes pathologic whole-slide images (WSIs) to accurately predict the status of KRAS, NRAS, and BRAFV600E. 129 patients with left-sided colon cancer and rectal cancer from the Third Affiliated Hospital of Sun Yat-sen University were assigned to the training and testing cohorts. Utilizing three convolutional neural networks (ResNet18, ResNet50, and Inception v3), we extracted 206 pathological features from H&E-stained WSIs, serving as the foundation for constructing specific pathological models. A clinical feature model was then developed, with carcinoembryonic antigen (CEA) identified through comprehensive multiple regression analysis as the key biomarker. Subsequently, these two models were combined to create a clinical-pathological integrated model, resulting in a total of three genetic prediction models. 103 patients were evaluated in the training cohort (1,782,302 image tiles), while the remaining 26 patients were enrolled in the testing cohort (489,481 image tiles). Compared with the clinical model and the pathology model, the combined model which incorporated CEA levels and pathological signatures, showed increased predictive ability, with an area under the curve (AUC) of 0.96 in the training and an AUC of 0.83 in the testing cohort, accompanied by a high positive predictive value (PPV 0.92). The combined model demonstrated a considerable ability to accurately predict the status of KRAS, NRAS, and BRAFV600E in patients with left-sided colorectal cancer, with potential application to assist doctors in developing targeted treatment strategies for mCRC patients, and effectively identifying mutations and eliminating the need for confirmatory genetic testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助蓝天采纳,获得10
1秒前
蓝天应助LiWeipeng采纳,获得10
2秒前
4秒前
Verity应助YY采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
蓝天应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
外向烤鸡应助科研通管家采纳,获得10
8秒前
Xuezi应助科研通管家采纳,获得10
9秒前
蓝天应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
蓝天应助科研通管家采纳,获得10
9秒前
Zx_1993应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
10秒前
GE应助科研通管家采纳,获得10
10秒前
zxzxzx应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
12秒前
简单又菱发布了新的文献求助10
13秒前
蓝天发布了新的文献求助10
16秒前
住在魔仙堡的鱼完成签到 ,获得积分10
17秒前
要减肥又槐完成签到 ,获得积分10
18秒前
LM完成签到,获得积分10
19秒前
19秒前
mosisa完成签到,获得积分10
21秒前
白凌风完成签到 ,获得积分10
21秒前
21秒前
Jasper应助简单又菱采纳,获得10
22秒前
24秒前
整齐的不评完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560435
求助须知:如何正确求助?哪些是违规求助? 4645604
关于积分的说明 14675724
捐赠科研通 4586775
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460989