Location Privacy Preservation Crowdsensing with Federated Reinforcement Learning

拥挤感测 计算机科学 强化学习 互联网隐私 人机交互 计算机安全 人工智能
作者
Zhichao You,Xuewen Dong,Ximeng Liu,Sheng Gao,Yongzhi Wang,Yulong Shen
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:3
标识
DOI:10.1109/tdsc.2024.3398994
摘要

Crowdsensing has become a popular method of sensing data collection while facing the problem of protecting participants' location privacy. Existing location-privacy crowdsensing mechanisms focus on static tasks and participants without considering sensing tasks' time requirements and participants' mobility, which cannot achieve satisfactory collected data quality and task completion in crowdsensing with dynamic tasks and participants. Inspired by this, we proposed a location-preservation crowdsensing mechanism, FedSense, considering dynamic tasks and participants based on federated learning (FL) and reinforcement learning (RL). In FedSense, through RL's outstanding decision-making ability, participants select sensing tasks to perform by well-trained RL models without uploading location information to servers for task allocation. We propose an independent tasks selection environment that defines actions, states, and rewards of RL to enable FedSense to achieve satisfactory task completion and data quality while preserving location privacy. Besides, FedSense applies an asynchronous FL aggregation algorithm that reduces participants' network stabilization and device computing ability requirements. Analysis proves that participants' location information does not leave the local device during the model training and task selection process, effectively avoiding privacy leakage. Simulation shows that compared with existing location-preservation crowdsensing mechanisms, FedSense achieves the highest task completion and sensing accuracy for dynamic tasks and participants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
feiyang完成签到 ,获得积分10
5秒前
雷小牛完成签到 ,获得积分10
8秒前
文与武完成签到 ,获得积分10
9秒前
殷勤的紫槐发布了新的文献求助200
10秒前
13秒前
奇奇怪怪的大鱼完成签到,获得积分10
15秒前
16秒前
申燕婷完成签到 ,获得积分10
17秒前
愉快豪完成签到,获得积分10
18秒前
文艺的鲜花完成签到 ,获得积分10
19秒前
futianyu完成签到 ,获得积分0
20秒前
666完成签到 ,获得积分10
21秒前
ycd完成签到,获得积分10
24秒前
6666666666完成签到 ,获得积分10
27秒前
小杨完成签到,获得积分10
27秒前
出厂价完成签到,获得积分10
28秒前
流星雨完成签到 ,获得积分10
31秒前
蚂蚁飞飞完成签到,获得积分10
35秒前
卡片完成签到,获得积分10
37秒前
蓝桉完成签到 ,获得积分10
38秒前
Yi完成签到,获得积分10
38秒前
王继完成签到,获得积分10
39秒前
sheep完成签到,获得积分10
39秒前
40秒前
hahaha6789y完成签到,获得积分10
40秒前
胡思乱想完成签到,获得积分10
43秒前
量子咸鱼K完成签到,获得积分10
43秒前
hahaha2完成签到,获得积分10
44秒前
Mo完成签到,获得积分10
45秒前
徐彬荣完成签到,获得积分10
47秒前
maybe完成签到,获得积分10
47秒前
hahaha1完成签到,获得积分10
48秒前
李某某应助科研通管家采纳,获得100
48秒前
LPPQBB应助科研通管家采纳,获得200
49秒前
Maestro_S应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得30
49秒前
Maestro_S应助科研通管家采纳,获得10
49秒前
Maestro_S应助科研通管家采纳,获得10
49秒前
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293803
求助须知:如何正确求助?哪些是违规求助? 4443897
关于积分的说明 13831682
捐赠科研通 4327774
什么是DOI,文献DOI怎么找? 2375729
邀请新用户注册赠送积分活动 1371005
关于科研通互助平台的介绍 1336012