Location Privacy Preservation Crowdsensing with Federated Reinforcement Learning

拥挤感测 计算机科学 强化学习 互联网隐私 人机交互 计算机安全 人工智能
作者
Zhichao You,Xuewen Dong,Ximeng Liu,Sheng Gao,Yongzhi Wang,Yulong Shen
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:1
标识
DOI:10.1109/tdsc.2024.3398994
摘要

Crowdsensing has become a popular method of sensing data collection while facing the problem of protecting participants' location privacy. Existing location-privacy crowdsensing mechanisms focus on static tasks and participants without considering sensing tasks' time requirements and participants' mobility, which cannot achieve satisfactory collected data quality and task completion in crowdsensing with dynamic tasks and participants. Inspired by this, we proposed a location-preservation crowdsensing mechanism, FedSense, considering dynamic tasks and participants based on federated learning (FL) and reinforcement learning (RL). In FedSense, through RL's outstanding decision-making ability, participants select sensing tasks to perform by well-trained RL models without uploading location information to servers for task allocation. We propose an independent tasks selection environment that defines actions, states, and rewards of RL to enable FedSense to achieve satisfactory task completion and data quality while preserving location privacy. Besides, FedSense applies an asynchronous FL aggregation algorithm that reduces participants' network stabilization and device computing ability requirements. Analysis proves that participants' location information does not leave the local device during the model training and task selection process, effectively avoiding privacy leakage. Simulation shows that compared with existing location-preservation crowdsensing mechanisms, FedSense achieves the highest task completion and sensing accuracy for dynamic tasks and participants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
平常心发布了新的文献求助10
4秒前
5秒前
5秒前
佳思思完成签到,获得积分10
6秒前
gttlyb完成签到,获得积分10
7秒前
可耐的紫夏完成签到,获得积分10
7秒前
7秒前
星辰大海应助大力沛萍采纳,获得10
9秒前
赵安琪完成签到,获得积分20
10秒前
小白发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
JamesPei应助千纸鹤采纳,获得10
13秒前
微笑芒果完成签到 ,获得积分10
13秒前
岱山完成签到,获得积分10
14秒前
15秒前
15秒前
平常心完成签到,获得积分10
16秒前
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
18秒前
小巧问芙完成签到 ,获得积分10
20秒前
21秒前
大力沛萍发布了新的文献求助10
22秒前
完美世界应助小白采纳,获得10
22秒前
mortal完成签到,获得积分10
22秒前
彭于晏应助赵安琪采纳,获得10
24秒前
24秒前
浮生发布了新的文献求助10
25秒前
楠楠爱淘淘完成签到,获得积分10
28秒前
乔心发布了新的文献求助10
30秒前
34秒前
34秒前
酷波er应助乔心采纳,获得10
34秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262724
求助须知:如何正确求助?哪些是违规求助? 2903334
关于积分的说明 8324903
捐赠科研通 2573399
什么是DOI,文献DOI怎么找? 1398260
科研通“疑难数据库(出版商)”最低求助积分说明 654044
邀请新用户注册赠送积分活动 632642