Basis for Accurate Protein pKa Prediction with Machine Learning

质子化 盐桥 水准点(测量) 脱质子化 计算机科学 滴定法 化学 氢键 药物发现 试验装置 机器学习 生物系统 计算化学 人工智能 分子 物理化学 生物化学 突变体 有机化学 离子 大地测量学 基因 生物 地理
作者
Zhitao Cai,Tengzi Liu,Qiaoling Lin,Jiahao He,Xiaowei Lei,Fangfang Luo,Yandong Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (10): 2936-2947 被引量:18
标识
DOI:10.1021/acs.jcim.3c00254
摘要

pH regulates protein structures and the associated functions in many biological processes via protonation and deprotonation of ionizable side chains where the titration equilibria are determined by pKa's. To accelerate pH-dependent molecular mechanism research in the life sciences or industrial protein and drug designs, fast and accurate pKa prediction is crucial. Here we present a theoretical pKa data set PHMD549, which was successfully applied to four distinct machine learning methods, including DeepKa, which was proposed in our previous work. To reach a valid comparison, EXP67S was selected as the test set. Encouragingly, DeepKa was improved significantly and outperforms other state-of-the-art methods, except for the constant-pH molecular dynamics, which was utilized to create PHMD549. More importantly, DeepKa reproduced experimental pKa orders of acidic dyads in five enzyme catalytic sites. Apart from structural proteins, DeepKa was found applicable to intrinsically disordered peptides. Further, in combination with solvent exposures, it is revealed that DeepKa offers the most accurate prediction under the challenging circumstance that hydrogen bonding or salt bridge interaction is partly compensated by desolvation for a buried side chain. Finally, our benchmark data qualify PHMD549 and EXP67S as the basis for future developments of protein pKa prediction tools driven by artificial intelligence. In addition, DeepKa built on PHMD549 has been proven an efficient protein pKa predictor and thus can be applied immediately to, for example, pKa database construction, protein design, drug discovery, and so on.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吧啦啦啦啦啦完成签到,获得积分10
刚刚
桐桐应助xcont采纳,获得10
刚刚
浮游应助苹果采纳,获得10
刚刚
马马发布了新的文献求助10
刚刚
星辰大海应助拼搏的夏槐采纳,获得10
刚刚
1秒前
1秒前
1秒前
cyanpomelo完成签到,获得积分10
1秒前
2秒前
paltte发布了新的文献求助10
2秒前
烟花应助秀儿采纳,获得10
2秒前
2秒前
Jim完成签到,获得积分20
2秒前
生姜完成签到,获得积分10
3秒前
情怀应助坦率的友容采纳,获得10
3秒前
3秒前
隐形的谷南完成签到,获得积分10
3秒前
3秒前
kouyu发布了新的文献求助10
4秒前
44dfc完成签到,获得积分10
4秒前
洪芃欢发布了新的文献求助10
4秒前
4秒前
万能图书馆应助合适一斩采纳,获得10
5秒前
5秒前
李nb完成签到,获得积分10
5秒前
田様应助爱吃狗答辩采纳,获得10
5秒前
科目三应助AJIN采纳,获得10
6秒前
123发布了新的文献求助10
6秒前
左耳东完成签到,获得积分10
6秒前
craccola完成签到,获得积分10
6秒前
深情安青应助coconut采纳,获得10
7秒前
7秒前
yangxt-iga发布了新的文献求助10
7秒前
Atlantis完成签到,获得积分10
8秒前
8秒前
大模型应助含糊的紫文采纳,获得10
8秒前
快冲冲冲发布了新的文献求助20
8秒前
lalala应助ablexm采纳,获得10
8秒前
xuxingxing发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286035
求助须知:如何正确求助?哪些是违规求助? 4438924
关于积分的说明 13819501
捐赠科研通 4320540
什么是DOI,文献DOI怎么找? 2371517
邀请新用户注册赠送积分活动 1367063
关于科研通互助平台的介绍 1330462