Basis for Accurate Protein pKa Prediction with Machine Learning

质子化 盐桥 水准点(测量) 脱质子化 计算机科学 滴定法 化学 氢键 药物发现 试验装置 机器学习 生物系统 计算化学 人工智能 分子 物理化学 生物化学 突变体 有机化学 离子 大地测量学 基因 生物 地理
作者
Zhitao Cai,Tengzi Liu,Qiaoling Lin,Jiahao He,Xiaowei Lei,Fangfang Luo,Yandong Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (10): 2936-2947 被引量:7
标识
DOI:10.1021/acs.jcim.3c00254
摘要

pH regulates protein structures and the associated functions in many biological processes via protonation and deprotonation of ionizable side chains where the titration equilibria are determined by pKa's. To accelerate pH-dependent molecular mechanism research in the life sciences or industrial protein and drug designs, fast and accurate pKa prediction is crucial. Here we present a theoretical pKa data set PHMD549, which was successfully applied to four distinct machine learning methods, including DeepKa, which was proposed in our previous work. To reach a valid comparison, EXP67S was selected as the test set. Encouragingly, DeepKa was improved significantly and outperforms other state-of-the-art methods, except for the constant-pH molecular dynamics, which was utilized to create PHMD549. More importantly, DeepKa reproduced experimental pKa orders of acidic dyads in five enzyme catalytic sites. Apart from structural proteins, DeepKa was found applicable to intrinsically disordered peptides. Further, in combination with solvent exposures, it is revealed that DeepKa offers the most accurate prediction under the challenging circumstance that hydrogen bonding or salt bridge interaction is partly compensated by desolvation for a buried side chain. Finally, our benchmark data qualify PHMD549 and EXP67S as the basis for future developments of protein pKa prediction tools driven by artificial intelligence. In addition, DeepKa built on PHMD549 has been proven an efficient protein pKa predictor and thus can be applied immediately to, for example, pKa database construction, protein design, drug discovery, and so on.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天下一番完成签到,获得积分10
刚刚
1秒前
ytolll完成签到,获得积分20
1秒前
biotnt完成签到,获得积分10
2秒前
2秒前
shuwu完成签到,获得积分20
3秒前
4秒前
加油吧弟弟完成签到,获得积分10
5秒前
6秒前
6秒前
和谐的丑发布了新的文献求助10
7秒前
ZcLee发布了新的文献求助10
8秒前
tudoser发布了新的文献求助10
8秒前
ztlooo完成签到,获得积分20
9秒前
bkagyin应助Bonnie采纳,获得10
10秒前
13秒前
13秒前
13秒前
MartinSEU完成签到,获得积分10
13秒前
鲤鱼宛凝完成签到,获得积分10
16秒前
16秒前
16秒前
苑阿宇完成签到 ,获得积分10
16秒前
18秒前
lkc发布了新的文献求助10
18秒前
Owen应助一一采纳,获得10
19秒前
Hello应助tudoser采纳,获得10
19秒前
19秒前
na发布了新的文献求助10
21秒前
田国兵发布了新的文献求助10
21秒前
桑酒完成签到,获得积分10
21秒前
虎人发布了新的文献求助10
22秒前
至若春和景明完成签到,获得积分10
22秒前
23秒前
孤独聪健发布了新的文献求助10
23秒前
23秒前
思源应助时差采纳,获得10
24秒前
英俊的铭应助lkc采纳,获得10
24秒前
大刘完成签到 ,获得积分10
25秒前
Bonnie发布了新的文献求助10
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Radon as a natural tracer to study transport processes in a karst system. An example in the Swiss Jura 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3225930
求助须知:如何正确求助?哪些是违规求助? 2874606
关于积分的说明 8187098
捐赠科研通 2541674
什么是DOI,文献DOI怎么找? 1372312
科研通“疑难数据库(出版商)”最低求助积分说明 646458
邀请新用户注册赠送积分活动 620753