Basis for Accurate Protein pKa Prediction with Machine Learning

质子化 盐桥 水准点(测量) 脱质子化 计算机科学 滴定法 化学 氢键 药物发现 试验装置 机器学习 生物系统 计算化学 人工智能 分子 物理化学 生物化学 突变体 有机化学 离子 大地测量学 基因 生物 地理
作者
Zhitao Cai,Tengzi Liu,Qiaoling Lin,Jiahao He,Xiaowei Lei,Fangfang Luo,Yandong Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (10): 2936-2947 被引量:7
标识
DOI:10.1021/acs.jcim.3c00254
摘要

pH regulates protein structures and the associated functions in many biological processes via protonation and deprotonation of ionizable side chains where the titration equilibria are determined by pKa's. To accelerate pH-dependent molecular mechanism research in the life sciences or industrial protein and drug designs, fast and accurate pKa prediction is crucial. Here we present a theoretical pKa data set PHMD549, which was successfully applied to four distinct machine learning methods, including DeepKa, which was proposed in our previous work. To reach a valid comparison, EXP67S was selected as the test set. Encouragingly, DeepKa was improved significantly and outperforms other state-of-the-art methods, except for the constant-pH molecular dynamics, which was utilized to create PHMD549. More importantly, DeepKa reproduced experimental pKa orders of acidic dyads in five enzyme catalytic sites. Apart from structural proteins, DeepKa was found applicable to intrinsically disordered peptides. Further, in combination with solvent exposures, it is revealed that DeepKa offers the most accurate prediction under the challenging circumstance that hydrogen bonding or salt bridge interaction is partly compensated by desolvation for a buried side chain. Finally, our benchmark data qualify PHMD549 and EXP67S as the basis for future developments of protein pKa prediction tools driven by artificial intelligence. In addition, DeepKa built on PHMD549 has been proven an efficient protein pKa predictor and thus can be applied immediately to, for example, pKa database construction, protein design, drug discovery, and so on.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助任性铅笔采纳,获得20
1秒前
核桃发布了新的文献求助10
1秒前
1秒前
芝9512完成签到 ,获得积分10
2秒前
albertxin发布了新的文献求助10
2秒前
江风海韵完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
田様应助仓鼠球采纳,获得10
3秒前
小胡先森应助hhj采纳,获得10
4秒前
shen完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
如意以晴发布了新的文献求助10
6秒前
斯文中道发布了新的文献求助10
6秒前
7秒前
7秒前
在水一方应助Lenacici采纳,获得10
8秒前
8秒前
Ava应助油条采纳,获得20
8秒前
mrx完成签到,获得积分20
9秒前
Smiley发布了新的文献求助10
9秒前
Smiley发布了新的文献求助10
9秒前
10秒前
Xue发布了新的文献求助10
12秒前
zyshao发布了新的文献求助10
12秒前
12秒前
Hmn发布了新的文献求助10
13秒前
13秒前
mrx发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126