清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Basis for Accurate Protein pKa Prediction with Machine Learning

质子化 盐桥 水准点(测量) 脱质子化 计算机科学 滴定法 化学 氢键 药物发现 试验装置 机器学习 生物系统 计算化学 人工智能 分子 物理化学 生物化学 突变体 有机化学 离子 大地测量学 基因 生物 地理
作者
Zhitao Cai,Tengzi Liu,Qiaoling Lin,Jiahao He,Xiaowei Lei,Fangfang Luo,Yandong Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (10): 2936-2947 被引量:22
标识
DOI:10.1021/acs.jcim.3c00254
摘要

pH regulates protein structures and the associated functions in many biological processes via protonation and deprotonation of ionizable side chains where the titration equilibria are determined by pKa's. To accelerate pH-dependent molecular mechanism research in the life sciences or industrial protein and drug designs, fast and accurate pKa prediction is crucial. Here we present a theoretical pKa data set PHMD549, which was successfully applied to four distinct machine learning methods, including DeepKa, which was proposed in our previous work. To reach a valid comparison, EXP67S was selected as the test set. Encouragingly, DeepKa was improved significantly and outperforms other state-of-the-art methods, except for the constant-pH molecular dynamics, which was utilized to create PHMD549. More importantly, DeepKa reproduced experimental pKa orders of acidic dyads in five enzyme catalytic sites. Apart from structural proteins, DeepKa was found applicable to intrinsically disordered peptides. Further, in combination with solvent exposures, it is revealed that DeepKa offers the most accurate prediction under the challenging circumstance that hydrogen bonding or salt bridge interaction is partly compensated by desolvation for a buried side chain. Finally, our benchmark data qualify PHMD549 and EXP67S as the basis for future developments of protein pKa prediction tools driven by artificial intelligence. In addition, DeepKa built on PHMD549 has been proven an efficient protein pKa predictor and thus can be applied immediately to, for example, pKa database construction, protein design, drug discovery, and so on.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助多乐多采纳,获得10
7秒前
蝎子莱莱xth完成签到,获得积分10
1分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
crazy完成签到,获得积分10
1分钟前
Square完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
h0jian09完成签到,获得积分10
1分钟前
lovelife完成签到,获得积分10
2分钟前
2分钟前
刘刘完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
魔幻的从丹完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
老石完成签到 ,获得积分10
3分钟前
Jessica应助hu采纳,获得10
3分钟前
4分钟前
4分钟前
雨jia完成签到,获得积分10
4分钟前
大个应助鹏哥爱科研采纳,获得10
4分钟前
4分钟前
4分钟前
George发布了新的文献求助10
4分钟前
自然亦凝完成签到,获得积分10
5分钟前
5分钟前
浑续发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
LINDENG2004完成签到 ,获得积分10
5分钟前
6分钟前
Eileen完成签到 ,获得积分0
6分钟前
zzhui完成签到,获得积分10
6分钟前
P_Chem完成签到,获得积分10
6分钟前
浑续完成签到,获得积分10
6分钟前
7分钟前
7分钟前
Jessica发布了新的文献求助10
7分钟前
8分钟前
方白秋完成签到,获得积分0
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664535
求助须知:如何正确求助?哪些是违规求助? 4864753
关于积分的说明 15107992
捐赠科研通 4823177
什么是DOI,文献DOI怎么找? 2582040
邀请新用户注册赠送积分活动 1536144
关于科研通互助平台的介绍 1494545