Basis for Accurate Protein pKa Prediction with Machine Learning

质子化 盐桥 水准点(测量) 脱质子化 计算机科学 滴定法 化学 氢键 药物发现 试验装置 机器学习 生物系统 计算化学 人工智能 分子 物理化学 生物化学 突变体 有机化学 离子 大地测量学 基因 生物 地理
作者
Zhitao Cai,Tengzi Liu,Qiaoling Lin,Jiahao He,Xiaowei Lei,Fangfang Luo,Yandong Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (10): 2936-2947 被引量:22
标识
DOI:10.1021/acs.jcim.3c00254
摘要

pH regulates protein structures and the associated functions in many biological processes via protonation and deprotonation of ionizable side chains where the titration equilibria are determined by pKa's. To accelerate pH-dependent molecular mechanism research in the life sciences or industrial protein and drug designs, fast and accurate pKa prediction is crucial. Here we present a theoretical pKa data set PHMD549, which was successfully applied to four distinct machine learning methods, including DeepKa, which was proposed in our previous work. To reach a valid comparison, EXP67S was selected as the test set. Encouragingly, DeepKa was improved significantly and outperforms other state-of-the-art methods, except for the constant-pH molecular dynamics, which was utilized to create PHMD549. More importantly, DeepKa reproduced experimental pKa orders of acidic dyads in five enzyme catalytic sites. Apart from structural proteins, DeepKa was found applicable to intrinsically disordered peptides. Further, in combination with solvent exposures, it is revealed that DeepKa offers the most accurate prediction under the challenging circumstance that hydrogen bonding or salt bridge interaction is partly compensated by desolvation for a buried side chain. Finally, our benchmark data qualify PHMD549 and EXP67S as the basis for future developments of protein pKa prediction tools driven by artificial intelligence. In addition, DeepKa built on PHMD549 has been proven an efficient protein pKa predictor and thus can be applied immediately to, for example, pKa database construction, protein design, drug discovery, and so on.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
追寻依风发布了新的文献求助10
1秒前
qwp发布了新的文献求助10
1秒前
看看发布了新的文献求助10
2秒前
2秒前
眯眯眼的裙子完成签到,获得积分10
4秒前
Lucia完成签到 ,获得积分10
4秒前
大盆完成签到,获得积分10
4秒前
开朗醉波发布了新的文献求助10
5秒前
5秒前
泡菜鱼oo完成签到,获得积分20
6秒前
6秒前
Muddle完成签到,获得积分10
6秒前
wacfpp完成签到,获得积分10
6秒前
7秒前
cindy发布了新的文献求助10
7秒前
1234发布了新的文献求助10
7秒前
疯大仙外向太清完成签到,获得积分10
7秒前
浮泷完成签到,获得积分10
9秒前
9秒前
英姑应助赵小美采纳,获得10
9秒前
9秒前
Muddle发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
柠檬不萌完成签到,获得积分10
10秒前
D追完成签到,获得积分20
10秒前
鱼王木木完成签到,获得积分10
11秒前
11秒前
完美世界应助519采纳,获得10
11秒前
angelinazh发布了新的文献求助10
12秒前
12秒前
12秒前
苍竹士子完成签到,获得积分20
12秒前
13秒前
13秒前
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933