计算机科学
列联表
意外事故
图形
电力系统
卷积神经网络
电力网络
网络拓扑
人工神经网络
数据挖掘
功率(物理)
人工智能
拓扑(电路)
理论计算机科学
机器学习
数学
计算机网络
哲学
语言学
物理
量子力学
组合数学
作者
Valentin Bolz,Johannes Rue,Andreas Zell
标识
DOI:10.1109/icassp49357.2023.10094619
摘要
We develop a graph convolutional neural network for power system contingency analysis. In contrast to other methods, the proposed architecture is purely data-driven and does not require knowledge of the power grid’s underlying topology. Instead, the estimation of multiple correlation-based graphs enables a pinpoint exploitation of various power system intrinsic structures. The architecture is tested on two large real-world type power grids containing over 6000 approximated output variables. The evaluation shows that the proposed method requires only a fraction of the training parameters to still perform significantly better than the baseline methods, especially when only few training samples are available.
科研通智能强力驱动
Strongly Powered by AbleSci AI