Fine-grained 93W-4.9Ni-2.1Fe alloy with ultrahigh yield strength prepared via low temperature sintering of W nanocomposite powder

材料科学 粒度 微观结构 烧结 合金 产量(工程) 材料的强化机理 相(物质) 复合材料 晶界 抗压强度 纳米复合材料 相对密度 复合数 冶金 化学 有机化学
作者
Xu-Wen Su,Zhi He,Tao Yin,Shu-Xin Yan,Yun-Ting Hou,Heng Mao,Mingyang Li,Longlong Dong,Guodong Sun,Yusheng Zhang
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:879: 145298-145298 被引量:7
标识
DOI:10.1016/j.msea.2023.145298
摘要

In this study, to obtain tungsten heavy alloy (WHA, 93W-4.9Ni-2.1Fe) with fine grain, high density and enhanced strength, W–Ni–Fe nanocomposite powder with high sintering driving force and small composite scale was designed and prepared. The effects of sintering temperature on the microstructure and properties of WHAs were systematically investigated. At a relatively low temperature of 1300 °C, WHAs with both high relative density of 98.0±0.31% and fine grain size of 2.07 μm were obtained, which was much smaller than that of traditional WHAs (30–60 μm). This special microstructure made it simultaneously achieve excellent compressive yield strength (1555 MPa), high strain-to-failure (over 40%) and hardness (480 HV0.5). This ultrahigh yield strength was about 2 times as the conventional WHAs with lager grain size. With the further increase of temperature to 1450 °C, the grain size of W grew significantly from 2.07 to 6.57 μm and the yield strength decreased remarkedly to 947 MPa. It was found that the W phase had good interfacial bonding with the γ-(Ni, Fe) matrix phase and the enhanced mechanical properties were mainly contributed by the small grain size and high ratio of phase boundary, which can significantly improve the storage capacity of dislocation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助吃甘薯的小白采纳,获得30
刚刚
萌宁发布了新的文献求助10
刚刚
呆萌无色发布了新的文献求助30
2秒前
limi发布了新的文献求助20
3秒前
4秒前
浮游应助liuxy采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Beyond095完成签到,获得积分10
6秒前
8秒前
Jenifer完成签到,获得积分10
8秒前
CCC发布了新的文献求助10
8秒前
9秒前
9秒前
失眠柚子完成签到 ,获得积分10
10秒前
心灵美安珊应助阿蓉啊采纳,获得10
11秒前
11秒前
lxcy0612完成签到,获得积分10
12秒前
善良的茗茗完成签到,获得积分20
12秒前
17发布了新的文献求助10
13秒前
xiaochaoge完成签到,获得积分10
13秒前
娄天宇发布了新的文献求助10
14秒前
luck发布了新的文献求助10
16秒前
pluto应助luo_jy采纳,获得10
16秒前
Cambridge发布了新的文献求助10
16秒前
Lucas应助白河采纳,获得30
18秒前
18秒前
励志发SCI完成签到 ,获得积分10
18秒前
AAAAa完成签到,获得积分20
19秒前
拼搏翠桃完成签到,获得积分10
19秒前
22秒前
杙北完成签到 ,获得积分10
22秒前
英俊的铭应助liujianxin采纳,获得10
22秒前
凉白开完成签到,获得积分10
25秒前
无极微光应助en采纳,获得20
27秒前
Lucas应助整齐的未来采纳,获得10
28秒前
28秒前
Potaku完成签到,获得积分10
29秒前
29秒前
Cambridge完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424333
求助须知:如何正确求助?哪些是违规求助? 4538732
关于积分的说明 14163572
捐赠科研通 4455641
什么是DOI,文献DOI怎么找? 2443832
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304