Fine-grained 93W-4.9Ni-2.1Fe alloy with ultrahigh yield strength prepared via low temperature sintering of W nanocomposite powder

材料科学 粒度 微观结构 烧结 合金 产量(工程) 材料的强化机理 相(物质) 复合材料 晶界 抗压强度 纳米复合材料 相对密度 复合数 冶金 化学 有机化学
作者
Xu-Wen Su,Zhi He,Tao Yin,Shu-Xin Yan,Yun-Ting Hou,Heng Mao,Mingyang Li,Longlong Dong,Guodong Sun,Yusheng Zhang
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:879: 145298-145298 被引量:3
标识
DOI:10.1016/j.msea.2023.145298
摘要

In this study, to obtain tungsten heavy alloy (WHA, 93W-4.9Ni-2.1Fe) with fine grain, high density and enhanced strength, W–Ni–Fe nanocomposite powder with high sintering driving force and small composite scale was designed and prepared. The effects of sintering temperature on the microstructure and properties of WHAs were systematically investigated. At a relatively low temperature of 1300 °C, WHAs with both high relative density of 98.0±0.31% and fine grain size of 2.07 μm were obtained, which was much smaller than that of traditional WHAs (30–60 μm). This special microstructure made it simultaneously achieve excellent compressive yield strength (1555 MPa), high strain-to-failure (over 40%) and hardness (480 HV0.5). This ultrahigh yield strength was about 2 times as the conventional WHAs with lager grain size. With the further increase of temperature to 1450 °C, the grain size of W grew significantly from 2.07 to 6.57 μm and the yield strength decreased remarkedly to 947 MPa. It was found that the W phase had good interfacial bonding with the γ-(Ni, Fe) matrix phase and the enhanced mechanical properties were mainly contributed by the small grain size and high ratio of phase boundary, which can significantly improve the storage capacity of dislocation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
buno应助jy采纳,获得10
3秒前
paparazzi221发布了新的文献求助10
4秒前
田生完成签到,获得积分10
4秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
4秒前
4秒前
爆米花应助towerman采纳,获得10
5秒前
羊笨笨完成签到 ,获得积分10
5秒前
6秒前
光亮芷天完成签到,获得积分10
6秒前
6秒前
7秒前
粗犷的问夏完成签到,获得积分10
8秒前
知行合一完成签到 ,获得积分10
9秒前
9秒前
10秒前
李爱国应助晨曦采纳,获得10
11秒前
0128lun发布了新的文献求助10
11秒前
phd发布了新的文献求助10
12秒前
君无名完成签到 ,获得积分10
12秒前
经年发布了新的文献求助10
12秒前
QXR完成签到,获得积分10
13秒前
豆dou完成签到,获得积分10
13秒前
Dddd发布了新的文献求助10
13秒前
HCl完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
16秒前
16秒前
Hollen完成签到 ,获得积分10
17秒前
慕青应助学术蠕虫采纳,获得10
18秒前
18秒前
叶子发布了新的文献求助10
19秒前
orangel完成签到,获得积分10
20秒前
半壶月色半边天完成签到 ,获得积分10
21秒前
tmpstlml发布了新的文献求助10
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808